A.K. Tiwari et al. / Journal of Photochemistry and Photobiology A: Chemistry 223 (2011) 6–13
13
[6] J.H. Mathias, M.J. Rosen, L. Davenport, Fluorescence study of premicellar aggre-
gation in cationic gemini surfactants, Langmuir 17 (2001) 6148–6154.
[7] S. De, V.K. Aswal, P.S. Goyal, S. Bhattacharya, Role of spacer chain length in
dimeric micellar organization. Small angle neutron scattering and fluorescence
studies, J. Phys. Chem. 100 (1996) 11664–11671.
[8] R. Zana, in: K. Holmberg (Ed.), Novel Surfactants, Dekker, New York, 1998.
[9] P.K. Behera, S. Mohapatra, S. Patel, B.K. Mishra, Dye–surfactant interaction:
solubilization of styryl pyridinium dyes of varying alkyl chain in alfa-olefinic
sulfonate and linear alkyl benzene sulfonate solutions, J. Photochem. Photobiol.
A 169 (2005) 253–260.
[29] H. Hirata, N. Hattori, M. Ishida, H. Okabayashi, M. Frusaka, R. Zana, Small-angle
neutron-scattering study of bis(quaternary ammonium bromide) surfactant
micelles in water. Effect of the spacer chain length on micellar structure, J.
Phys. Chem. 99 (1995) 17778–17784.
[30] S. Kundu, N. Chattopadhyay, Effect of urea on micellization of CTAB. Probed by
ESPT of carbazole, Chem. Phys. Lett. 228 (1994) 79–82.
[31] S. Kundu, S. Maity, S.C. Bera, N. Chattopadhyay, Twisted intramolecular charge
transfer of dimethylaminobenzonitrile in micellar environments. A way to look
at the orientation of the probe within the apolar microenvironment, J. Mol.
Struct. 405 (1997) 231–238.
[10] R. Sabate, M. Gallardo, J. Estelrich, Location of pinacyanol in micellar solutions
of N-alkyl trimethylammonium bromide surfactants, J. Colloid Interface Sci.
233 (2001) 205–210.
[11] P. Das, A. Chakrabarty, A. Mallick, N. Chattopadhyay, Photophysics of a cationic
biological photosensitizer in anionic micellar environments: combined effect
of polarity and rigidity, J. Phys. Chem. B 111 (2007) 11169–11176.
[12] R. Hadgiivanova, H. Diamant, Premicellar aggregation of amphiphilic
molecules, J. Phys. Chem. B 111 (2007) 8854–8859.
[32] N. Sarkar, A. Datta, S. Das, K. Bhattacharyya, Solvation dynamics of coumarin
480 in micelles, J. Phys. Chem. 100 (1996) 15483–15486.
[33] S.D. Wettig, P. Nowak, R.E. Verrall, Thermodynamic aggregation properties
of gemini surfactants with hydroxyl substituted spacers in aqueous solution,
Langmuir 18 (2002) 5354–5359.
[34] S.D. Wettig, R.E. Verrall, Thermodynamic studies of aqueous m–s–m gemini
surfactant systems, J. Colloid Interface Sci. 235 (2001) 310–316.
[35] A. Mallick, B. Haldar, S. Maiti, N. Chattopadhyay, Constrained photophysics of
3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micellar envi-
ronments: a spectrofluorometric study, J. Colloid Interface Sci. 278 (2004)
215–223.
[13] R. Hadgiivanova, H. Diamant, Premicellar aggregation of amphiphilic
molecules: aggregate lifetime and polydispersity, J. Chem. Phys. 130 (2009)
114901–114905.
[14] F.M. Menger, C.A. Littau, Gemini surfactants: a new class of self-assembling
molecules, J. Am. Chem. Soc. 115 (1993) 10083–10090.
[36] D. Shukla, V.K. Tyagi, Cationic gemini surfactants: a review, J. Oleo Sci. 55 (2006)
381–390.
[15] M.J. Rosen, J.H. Mathias, L. Davenport, Aberrant aggregation behavior in cationic
gemini surfactants investigated by surface tension, interfacial tension, and flu-
orescence methods, Langmuir 15 (1999) 7340–7346.
[37] A. Pinazo, X. Wen, L. Perez, M.R. Infante, E.I. Franses, Aggregation behavior in
water of monomeric and gemini cationic surfactants derived from arginine,
Langmuir 15 (1999) 3134–3142.
[16] F.M. Menger, J.S. Keiper, V. Azov, Gemini surfactants with acetylenic spacers,
Langmuir 16 (2000) 2062–2067.
[38] A. Rodriguez, M.D.M. Graciani, M. Munoz, I. Robina, M.L. Moya, Effects of
ethylene glycol addition on the aggregation and micellar growth of gemini
surfactants, Langmuir 22 (2006) 9519–9525.
[39] Kabir-ud-Din, P.A. Koya, Effects of solvent media and temperature on the
self-aggregation of cationic dimeric surfactant 14-6-14, 2Br− studied by con-
ductometric and fluorescence techniques, Langmuir 26 (2010) 7905–7914.
[40] N.J. Turro, A. Yekta, Luminescent probes for detergent solutions. A simple pro-
cedure for determination of the mean aggregation number of micelles, J. Am.
Chem. Soc. 100 (1978) 5951–5952.
[41] C.C. Ruiz, J.A.M. Bolivar, J. Aguiar, G. MacIssac, S. Moroze, R. Palepu, Thermody-
namic and structural studies of Triton X-100 micelles in ethylene glycol–water
mixed solvents, Langmuir 17 (2001) 6831–6840.
[42] R. Das, D. Guha, S. Mitra, S. Kar, S. Lahiri, S. Mukherjee, Intramolecular charge
transfer as probing reaction: fluorescence monitoring of protein–surfactant
interaction, J. Phys. Chem. 101 (1997) 4042–4047.
[17] M.J. Rosen, L. Liu, Surface activity and premicellar aggregation of some novel
diquaternary gemini surfactants, J. Am. Oil Chem. Soc. 76 (1996) 885–890.
[18] L.D. Song, M.J. Rosen, Surface properties, micellization, and premicellar aggre-
gation of gemini surfactants with rigid and flexible spacers, Langmuir 12 (1996)
1149–1153.
[19] X. Pei, Y. You, J. Zhao, Y. Deng, E. Li, Z. Li, Adsorption and aggregation
of 2-hydroxyl-propanediyl-␣,-bis(dimethyldodecyl ammonium bromide) in
aqueous solution: effect of intermolecular hydrogen-bonding, J. Colloid Inter-
face Sci. 351 (2010) 457–465.
[20] S.S. Jaffer, M. Sowmiya, S.K. Saha, P. Purkayastha, Defining the different phases
of premicellar aggregation using the photophysical changes of a surface-
probing compound, J. Colloid Interface Sci. 325 (2008) 236–242.
[21] M. Sowmiya, A.K. Tiwari, S.K. Saha, Fluorescent probe studies of micropolarity,
premicellar and micellar aggregation of non-ionic Brij surfactants, J. Colloid
Interface Sci. 344 (2010) 97–104.
[43] R.B. Macgregor, G. Weber, Estimation of the polarity of the protein interior by
optical spectroscopy, Nature 319 (1986) 70–73.
[22] S.K. Saha, P. Purkayastha, A.B. Das, Photophysical characterization and effect of
pH on the twisted intramolecular charge transfer fluorescence of trans-2-[4-
(dimethylamino)styryl]benzothiazole, J. Photochem. Photobiol. A 195 (2008)
368–377.
[23] S.K. Saha, P. Purkayastha, A.B. Das, S. Dhara, Excited state isomerization and
effect of viscosity- and temperature-dependent torsional relaxation on TICT flu-
orescence of trans-2-[4-(dimethylamino)styryl]benzothiazole, J. Photochem.
Photobiol. A 199 (2008) 179–187.
[44] S.M. Dennison, J. Guharay, P.K. Sengupta, Excited-state intramolecular proton
transfer (ESIPT) and charge transfer (CT) fluorescence probe for model mem-
branes, Spectrochim. Acta Part A 55 (1999) 1127–1132.
[45] A. Mallick, B. Haldar, N. Chattopadhyay, Spectroscopic investigation on the
interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quino-
lizine with serum albumins, J. Phys. Chem. B 109 (2005) 14683–14690.
[46] X. Wang, J. Wang, Y. Wang, H. Yan, P. Li, R.K. Thomas, Effect of the nature of
the spacer on the aggregation properties of gemini surfactants in an aqueous
solution, Langmuir 20 (2004) 53–56.
[47] A. Mallick, B. Haldar, S. Maiti, S.C. Bera, N. Chattopadhyay, Photophysical study
of 3-Acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine in biomimetic
reverse micellar nanocavities: a spectroscopic approach, J. Phys. Chem. 109
(2005) 14675–14682.
[24] M. Sowmiya, P. Purkayastha, A.K. Tiwari, S.S. Jaffer, S.K. Saha, Char-
acterization of guest molecule concentration dependent nanotubes of
-cyclodextrin and their secondary assembly: study with trans-2-[4-
(dimethylamino)styryl]benzothiazole,
a TICT-fluorescence probe, J. Pho-
tochem. Photobiol. A 205 (2009) 186–196.
[25] K. Kalyansundaram, J.K. Thomas, Environmental effects on vibronic band inten-
sities in pyrene monomer fluorescence and their application in studies of
micellar systems, J. Am. Chem. Soc. 99 (1977) 2039–2044.
[48] A. Mielniczak, B. Wandelt, S. Wysocki, 4-(4-Dimethylaminostyryl) pyridinium
derivative: a solvent viscosity- and polarity-sensitive fluorescent sensor, Mater.
Sci. 20 (2002) 59–69.
[26] R.
Zana,
M.
In,
H.
Levy,
G.
Duportail,
Alkanediyl-␣,-
[49] T.W.G. Solomons, C.B. Fryhle, Organic Chemistry, eighth ed., John Wiley & Sons
(Asia), Singapore, 2004.
[50] M. Gratzel, J.K. Thomas, Dynamics of pyrene fluorescence quenching in aqueous
ionic micellar systems. Factors affecting the permeability of micelles, J. Am.
Chem. Soc. 95 (1973) 6885–6889.
[51] N.J. Turro, M. Gratzel, A.M. Braun, Photophysical and photochemical processes
in micellar systems, Angew. Chem. Int. Ed. 19 (1980) 675–696.
[52] R. Zana, Y. Talmon, Dependence of aggregate morphology on structure of
dimeric surfactants, Nature 362 (1993) 228–230.
bis(dimethylalkylammonium bromide). 7. Fluorescence probing studies
of micelle micropolarity and microviscosity, Langmuir 13 (1997)
5552–5557.
[27] M. Rosen, L. Liu, Surface activity and premicellar aggregation of some
novel diquaternary gemini surfactants, J. Am. Oil Chem. Soc. 73 (1996)
885–890.
[28] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Kluwer Aca-
demic/Plenum Publishers, New York, 1999.