y Crystal data for 3a: C34H56O2, Mw ¼ 496.79 g molꢀ1, T ¼ 293(2) K,
orthorhombic, space group Aba2, a ¼ 19.655(4), b ¼ 20.326(4), c ¼
16.036(3) A, b ¼ 901, V ¼ 6407(2) A3, Z ¼ 8, rcalcd ¼ 1.030 Mg mꢀ3, m
¼ 0.061 mmꢀ1, reflections collected: 11 916, independent reflections:
2929 (Rint ¼ 0.0506), Final R indices [I 4 2sI]: R1 ¼ 0.0527, wR2
¼
0.1108, R indices (all data): R1 ¼ 0.1280, wR2 ¼ 0.1210. 3d: C34H52O,
Mw ¼ 492.76 g molꢀ1, T ¼ 293(2) K, monoclinic, space group C2/c, a
¼ 22.715(5), b ¼ 8.6051(17), c ¼ 16.731(3) A, b ¼ 109.25(3)1, V ¼
3087.4(11) A3, Z ¼ 4, rcalcd ¼ 1.060 Mg mꢀ3, m ¼ 0.063 mmꢀ1
,
¼
reflections collected: 7422, independent reflections: 2700 (Rint
0.0461), Final R indices [I 4 2sI]: R1 ¼ 0.0685, wR2 ¼ 0.1558, R
indices (all data): R1 ¼ 0.1758, wR2 ¼ 0.1757. There is a crystal-
lographical twofold symmetry in 3d. The C17 has its CH2 groups
disordered equally over two sides (only one of which is shown in Fig.
S2 (ESIw)). No allowance was made for the H atoms of both C16 and
C17. CCDC 668730 (3a) and 668731 (3d).
1 (a) C. Narayana and M. Periasamy, Synthesis, 1985, 253–268; (b) B. S.
Wakefield, Organolithium Methods, Academic Press, San Diego, 1988,
p. 95; (c) S. Murai and K. Iwamoto, in Modern Carbonyl Chemistry,
ed. J. Otera, Wiley-VCH, Weinheim, Germany, 2000, p. 131.
2 (a) D. Seyferth and R. M. Weinstein, J. Am. Chem. Soc., 1982, 104,
5534–5535; (b) D. Seyferth, R. C. Hui and W.-L. Wang, J. Org.
Chem., 1993, 58, 5843–5845.
3 (a) S. Murai, I. Ryu, J. Iriguchi and N. Sonoda, J. Am. Chem. Soc.,
1984, 106, 2440–2442; (b) K. Iwamoto, N. Chatani and S. Murai, J.
Org. Chem., 2000, 65, 7944–7948.
4 (a) K. Smith and G. J. Pritchard, Angew. Chem., Int. Ed. Engl.,
1990, 29, 282–283; (b) N.-S. Li, S. Yu and G. W. Kabalka,
Organometallics, 1998, 17, 3815–3818; (c) T. Takahashi, S. Huo,
R. Hara, Y. Noguchi, K. Nakajima and W. Sun, J. Am. Chem.
Soc., 1999, 121, 1094–1095.
Scheme 4 A possible mechanism for the formation of cyclopenta-
dienones 2 and diketones 3.
shown in entries 4–8 of Table 1, CuCl-mediated cycloaddition
of 1e–i with CO produced exclusively 2d–h, probably because
phenyl and TMS groups on the butadiene skeletons could
stabilize the carbon–copper bond of intermediate B and there-
fore intramolecular radical cyclization became more favored.
In summary, the first examples of tandem CO insertion and
intra- or intermolecular annulation of organocopper reagents
have been developed to afford cyclopentadienones and their
head-to-head dimers. Further investigation on the reaction
mechanism, scope and application are in process.
5 Q. Song, J. Chen, X. Jin and Z. Xi, J. Am. Chem. Soc., 2001, 123,
10419–10420.
This work was supported by the National Natural Science
Foundation of China and the Major State Basic Research
Development Program (2006CB806105). The Cheung Kong
Scholars Programme, Qiu Shi Science & Technologies Foun-
dation, Dow Corning Corporation, Eli Lilly China and BASF
are gratefully acknowledged.
6 C. Wang, J. Yuan, G. Li, Z. Wang, S. Zhang and Z. Xi, J. Am.
Chem. Soc., 2006, 128, 4564–4565; see also: C. Wang and Z. Xi,
Chem. Commun., 2007, 5119–5133.
7 (a) D. Seyferth and R. C. Hui, J. Am. Chem. Soc., 1985, 107,
4551–4553; (b) D. Seyferth and R. C. Hui, Tetrahedron Lett., 1986,
27, 1473–1476; (c) B. H. Lipshutz and T. R. Elworthy, Tetrahedron
Lett., 1990, 31, 477–480; (d) T. Tsuda, M. Miwa and T. Saegusa, J.
Org. Chem., 1979, 44, 3734–3736; (e) T. Minami and J. Motoyoshiya,
Synthesis, 1992, 333–349; (f) I. C. Baldwin, R. P. Beckett and J. M. J.
Williams, Synthesis, 1996, 34–36; (g) F. Nicotra, L. Panza and G.
Russo, J. Chem. Soc., Chem. Commun., 1984, 5–6; (h) N.-S. Li, S. Yu
and G. W. Kabalka, Organometallics, 1999, 18, 1811–1814.
8 (a) T. Takahashi, M. Kotora, R. Hara and Z. Xi, Bull. Chem. Soc.
Jpn., 1999, 72, 2591–2602; (b) T. Takahashi, Z. Xi and M. Kotora,
Recent Res. Dev. Pure Appl. Chem., 1998, 2, 515–525; (c) M.
Kotora, Z. Xi and T. Takahashi, J. Synth. Org. Chem., Jpn.,
1997, 55, 958–969.
Notes and references
z A typical procedure for the preparation of cyclopentadienones and
their head-to-head dimers. To a 10 mL solution of 1,4-diiodo-1,3-diene
compound (1.0 mmol) in Et2O at ꢀ78 1C was added t-BuLi (4.0 mmol,
1.5 mol Lꢀ1 in pentane). After this reaction mixture was stirred at
ꢀ78 1C for 1 h, CuCl (2.0 mmol) was added and kept at ꢀ78 1C for
0.5 h. Then CO was bubbled into the vessel for 5 min, followed by
addition of tBuOOtBu (2.0 mmol) to this reaction mixture. After 1 h of
stirring at 0 1C, the reaction mixture was quenched with water and
extracted with Et2O. The extraction was washed with brine and dried
over MgSO4. The solvent was then evaporated in vacuo and the residue
was purified by column chromatography using silica gel (hexane :
9 (a) C. M. P. Kronenburg, J. T. B. H. Jastrzebski, M. Lutz, A. L. Spek
and G. van Koten, Organometallics, 2003, 22, 2312–2317; (b) J.
Norinder, J. Backvall, N. Yoshikai and E. Nakamura, Organometallics,
¨
2006, 25, 2129–2132; (c) C. Chen, C. Xi, Y. Liu and X. Hong, J. Org.
Chem., 2006, 71, 5373–5376; (d) C.-F. Lee, L.-M. Yang, T.-Y. Hwu, A.-
S. Feng, J.-C. Tseng and T.-Y. Luh, J. Am. Chem. Soc., 2000, 122,
4992–4993; (e) B. H. Lipshutz, Acc. Chem. Res., 1997, 30, 277–282.
10 (a) S. Walspurger, A. V. Vasilyev, J. Sommer and P. Pale, Tetrahe-
dron, 2005, 61, 3559–3564; (b) M. K. Seery, S. M. Draper, J. M. Kelly,
T. McCabe and T. B. H. McMurry, Synthesis, 2005, 470–474;
1
Et2O ¼ 20 : 1) to afford the final products. 2a: H NMR (300 MHz,
CDCl3, 25 1C): d ¼ 0.88 (t, J ¼ 7.2 Hz, 6H, CH3), 0.99 (t, J ¼ 7.2 Hz,
6H, CH3), 1.33–1.54 (m, 8H, CH2), 2.04 (t, J ¼ 7.5 Hz, 4H, CH2), 2.23
(t, J ¼ 7.5 Hz, 4H, CH2); 13C NMR (75 MHz, CDCl3, 25 1C): d ¼
14.23 (2 CH3), 14.43 (2 CH3), 22.52 (2 CH2), 22.85 (2 CH2), 24.91 (2
CH2), 28.30 (2 CH2), 125.78 (2 quat. C), 154.95 (2 quat. C), 204.94 (1
ketone CQO). 3a: 1H NMR (300 MHz, CDCl3, 25 1C): d ¼ 0.74 (t, J
¼ 7.2 Hz, 6H, CH3), 0.82 (t, J ¼ 7.5 Hz, 6H, CH3), 0.97 (t, J ¼ 7.2 Hz,
6H, CH3), 1.09 (t, J ¼ 7.2 Hz, 6H, CH3), 1.37–1.73 (m, 24H, CH2),
2.18–2.41 (m, 8H, CH2); 13C NMR (75 MHz, CDCl3, 25 1C): d ¼ 14.70
(2 CH3), 15.05 (2 CH3), 15.40 (2 CH3), 15.66 (2 CH3), 17.56 (2 CH2),
19.22 (2 CH2), 21.49 (2 CH2), 21.72 (2 CH2), 26.56 (2 CH2), 32.49
(2 CH2), 32.92 (2 CH2), 33.30 (2 CH2), 53.83 (2 quat. C),
60.85 (2 quat. C), 144.84 (2 quat. C), 173.41 (2 quat. C), 209.36
(2 ketone CQO).
(c) Y.-T. Wu, B. Flynn, H. Schirmer, F. Funke, S. Muller, T. Labahn,
¨
¨
M. Notzel and A. de Meijere, Eur. J. Org. Chem., 2004, 724–728.
11 (a) P. E. Eaton, D. Tang and R. Gilardi, Tetrahedron Lett., 2002,
43, 3–5; (b) G. Mehta and S. H. K. Reddy, Tetrahedron Lett., 1991,
32, 6403–6406.
12 Y. Badrieh, J. Blum and H. Schumann, J. Mol. Catal., 1994, 90,
231–244.
13 (a) Z. Xi and Q. Song, J. Org. Chem., 2000, 65, 9157–9159; (b) C.
Chen, C. Xi, Y. Jiang and X. Hong, J. Am. Chem. Soc., 2005, 127,
8024–8025.
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 1593–1595 | 1595