2132
T. Aoki et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2128–2132
Table 4. In vitro activity of 4b and 14 at mouse PPARa, b and d
subtypes
8. Xu, Y.; Mayhugh, D.; Saeed, A.; Wang, X.; Thompson,
R. C.; Dominianni, S. J.; Kauffman, R. F.; Singh, J.; Bean,
J. S.; Bensch, W. R.; Barr, R. J.; Osborne, J.; Montrose-
Rafizadeh, C.; Zink, R. W.; Yumibe, N. P.; Huang, N.;
Luffer-Atlas, D.; Rungta, D.; Maise, D. E.; Mantlo, N. B.
J. Med. Chem. 2003, 46, 5121.
9. Fujita, T.; Sugiyama, Y.; Taketomi, S.; Sohda, T.;
Kawamatsu, Y.; Suzuoki, Z. Diabetes 1983, 32, 804.
10. Sofia, M. J.; Chakravarty, P. K.; Katzenellenbogen, J. A.
J. Org. Chem. 1983, 48, 3318.
Compound
Mouse PPAR subtype (EC50, lM)a,b
a
c
d
4b
14
1
0.1
(21%)c
10
(6%)
(7%)
a,b,cSee corresponding footnotes to Table 1.
11. Godfrey, A. G.; Brooks, D. A.; Hay, L. A.; Peters, M.;
McCarthy, J. R.; Mitchell, D. J. Org. Chem. 2003, 68,
2623.
12. Moriya, T.; Seki, M.; Takabe, S.; Matsumoto, K.;
Takashima, K.; Mori, T.; Odawara, A.; Takeyama, S. J.
Med. Chem. 1988, 31, 1997.
In conclusion, we have synthesized a series of novel 1,3-
dioxane-2-carboxylic acid derivatives and evaluated
their PPAR subtype agonist activities. Structure-activity
relationship studies on the linker and the dioxane moiety
of this series revealed that the biological activity and
selectivity were sensitive to the length of the linker and
the geometrical configuration of the 1,3-dioxane ring.
This investigation led to the identification of several
compounds as highly potent and selective human
PPARa agonists, and the representative compound 4b
showed excellent hypolipidemic activity in diabetic
KK-Ay mice. Our results suggest that the development
of potent and selective PPARa agonists will be useful
in the treatment of hyperlipidemia and metabolic disor-
ders in type 2 diabetes.
13. Harabe, T.; Matsumoto, T.; Shioiri, T. Tetrahedron Lett.
2007, 48, 1443.
14. The configuration of the 1,3-dioxane ring moiety of 4b was
determined to be cis by 1H NMR analysis of the
corresponding alcohol 22, which has protons that allow
such a determination. The alcohol derivative 22 was
synthesized by LiAlH4 reduction of purified oxazole
methyl ester 10b free of trans-isomer. The a-protons at
the 4- and 6-positions were clearly distinguished from the
b-protons by the NOE correlation observed between the 5-
a-and 4-a(6-a)-protons. The strong NOE from the 4,6-b-
protons assigned above to the 2-hydroxymethyl protons
shows conclusively that the configuration is cis. The strong
NOE in 12b between the 4,6-b- and the 2-methyl protons
Acknowledgments
1
indicates a trans-configuration. H NMR of 22 (pyridine-
d5, 300 MHz) d1.25–1.30 (4H, m), 1.70 (2H, m), 1.71 (3H, s),
1.75 (1H, m, H-5a), 2.23 (3H, s), 2.48 (2H, t, J = 7.5 Hz),
3.72 (2H, dd, J = 11.7, 7.5 Hz, H-4,6b), 3.98 (2H, dd,
J = 11.7, 4.5 Hz, H-4,6a), 4.07 (2H, d, J = 4.2 Hz, 2b-
CH2OH), 7.21–7.58 (3H, m), 8.16–8.20 (2H, m). 1H NMR
of 12b (tetrahydrofuran-d8, 300 MHz) d 1.10–1.31 (2H, m),
1.36 (3H, s, 2b-CH3), 1.38–1.46 (1H, m, H-5a), 1.65–1.77
(4H, m), 2.31 (3H, s), 2.49 (2H, t, J = 7.5 Hz), 3.67 (2H, dd,
J = 11.7, 1.8 Hz, H-4,6a), 4.00 (2H, dd, J = 11.7, 1.5 Hz, H-
4,6b), 7.35–7.43 (3H, m), 7.93–7.96 (2H, m).
We thank Mr. Shoichi Chokai and Mr. Shinichi Tada
for practical guidance, and Dr. Akira Matsuura, Mr.
Masayuki Hattori and Dr. Gerald E. Smyth for helpful
suggestions during the preparation of the manuscript.
References and notes
1. (a) Kersten, S.; Desvergne, B.; Wahli, W. Nature 2000,
405, 421; (b) Berger, J.; Moller, D. E. Annu. Rev. Med.
2002, 53, 409.
2. (a) Braissant, O.; Foufelle, F.; Scotto, C.; Dauca, M.;
Wahli, W. Endocrinology 1996, 137, 354; (b) Auboeuf, D.;
Rieusset, J.; Fajas, L.; Vallier, P.; Frering, V.; Riou, J. P.;
Staels, B.; Auwerx, J.; Laville, M.; Vidal, H. Diabetes
1997, 46, 1319; (c) Staels, B.; Auwerx, J. Curr. Pharm. Des.
1997, 3, 1.
H
H
OH
Hβ
Hβ
CH3
2
Hβ
Hβ
6
6
2
OH
CH3
Hα
O
Hα
O
O
O
4
4
5
5
O
Hα
Hα
H
12b
H
22
3. Willson, T. M.; Brown, P. J.; Sternback, D. D.; Henke, B.
R. J. Med. Chem. 2000, 43, 527.
15. Shiotani, S.; Okada, H.; Nakamata, K.; Yamamoto, T.;
Sekino, F. Heterocycles 1996, 43, 1031.
16. Musso, D. L.; Cochran, F. R.; Kelley, J. L.; McLean, E.
W.; Selph, J. L.; Rigdon, G. C.; Orr, G. F.; Davis, R. G.;
Cooper, B. R.; Styles, V. L.; Thompson, J. B.; Hall, W. R.
J. Med. Chem. 2003, 46, 399.
17. Goto, Y.; Yamazaki, M.; Hamana, M. Chem. Pharm.
Bull. 1971, 19, 2050.
18. Glinski, M. B.; Durst, T. Can. J. Chem. 1983, 61, 573.
19. Charlton, J. L.; Alauddin, M. M. J. Org. Chem. 1986, 51,
3490.
4. (a) Torra, I. P.; Gervois, P.; Staels, B. Curr. Opin. Lipidol.
1999, 10, 151; (b) Seedorf, U.; Assmann, G. Nutr. Metab.
Cardiovasc. Dis. 2001, 11, 189.
5. Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L.
B.; Lewis, M. C.; Wilson, J. G.; Sundseth, S. S.; Koble, C.
S.; Wu, Z.; Chapman, J. M.; Lehmann, J. M.; Kliewer, S.
A.; Willson, T. M. J. Med. Chem. 1999, 42, 3785.
6. Brown, P. J.; Stuart, L. W.; Hurley, K. P.; Lewis, M. C.;
Winegar, D. A.; Wilson, J. G.; Wilkison, W. O.; Ittoop, O.
R.; Willson, T. M. Bioorg. Med. Chem. Lett. 2001, 11,
1225.
20. Kuwabara, K.; Murakami, K.; Todo, M.; Aoki, T.; Asaki,
T.; Murai, M.; Yano, J. J. Pharmacol. Exp. Ther. 2004,
309, 970.
7. Miyachi, H.; Nomura, M.; Tanase, T.; Takahashi, Y.; Ide,
T.; Tsunoda, M.; Murakami, K.; Awano, K. Bioorg. Med.
Chem. Lett. 2002, 12, 77.