2060
J. Cianci et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2055–2061
9. Baell, J. B.; Gable, R. W.; Harvey, A. J.; Toovey, N.;
Herzog, T.; Hansel, W.; Wulff, H. J. Med. Chem. 2004, 47,
2326.
10. Nielsen, S. F.; Kharazmi, A.; Christensen, S. B. Bioorg.
Med. Chem. 1998, 6, 937.
11. Schweizer, B.. In Patai, S., Rappoport, Z., Eds.; The
Chemistry of Enones, part 1; Wiley: Chichester, 1989.
12. Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.;
Lawrence, N. J.; McGown, A. T.; Rennison, D. Bioorg.
Med. Chem. Lett. 1998, 8, 1051.
13. Lawrence, N. J.; Patterson, R. P.; Ooi, L. L.; Cook, D.;
Ducki, S. Bioorg. Med. Chem. Lett. 2006, 16, 5844.
14. Lawrence, N. J.; Rennison, D.; McGown, A. T.; Hadfield,
J. A. Bioorg. Med. Chem. Lett. 2003, 13, 3759.
7-methoxy group more significantly reduces potency.
Since this alteration is unlikely to affect conformation,
it is suggested that the 7-methoxy group in these com-
pounds could directly and favourably interact with
Kv1.3. Introduction of an a-methyl group into the en-
one, as in 11, effected conformational change to the s-
trans form, but without significant change in activity.
Despite the observed conformational change, com-
pounds 5b and 11 show comparable alignment of their
benzofuran and methoxyphenyl rings. The enone itself
does not appear to be important for binding, but rather
acts as a spacer to orient the key-binding elements.
15. Edwards, M. L.; Stemerick, D. M.; Sunkara, P. S. J. Med.
Chem. 1990, 33, 1948.
16. Zhai, L.; Chen, M.; Blom, J.; Theander, T. G.; Christen-
sen, S. B.; Kharazmi, A. J. Antimicrob. Chemother. 1999,
43, 793.
17. Zhai, L.; Blom, J.; Chen, M.; Christensen, S. B.; Khar-
azmi, A. Antimicrob. Agents Chemother. 1995, 39, 2742.
18. Azam, P.; Sankaranarayanan, A.; Homerick, D.; Griffey,
S.; Wulff, H. J. Invest. Derm. 2007, 127, 1419.
Acknowledgments
We are grateful to the Australian National Health and
Medical Research Council for financial support.
A.J.H. is a NHMRC Industry Fellow (406698).
19. Beeton, C.; Wulff, H.; Barbaria, J.; Clot-Faybesse, O.;
Pennington, M.; Bernard, D.; Cahalan, M. D.; Chandy,
K. G.; Beraud, E. Proc. Nat. Acad. Sci. U.S.A. 2001, 98,
13942.
20. Xu, J. C.; Wang, P. L.; Li, Y. Y.; Li, G. Y.; Kaczmarek, L.
K.; Wu, Y. L.; Koni, P. A.; Flavell, R. A.; Desir, G. V.
Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 3112.
21. He, K.; Woolf, T. F.; Kindt, E. K.; Fielder, A. E.; Talaat,
R. E. Biochem. Pharmacol. 2001, 62, 191.
22. Spencer, J. P. E.; Kuhnle, G. G. C.; Williams, R. J.; Rice-
Evans, C. Biochem. J. 2003, 372, 173.
Supplementary data
Crystallographic data (excluding structure factors) for
the structures in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication numbers CCDC 674128-674130.
Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44 (0)1223 336033 or e-mail: de-
1
posit@ccdc.cam.ac.uk]. H NMR data for compounds
23. Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.;
Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.
24. Saa, J. M.; Dopico, M.; Martorell, G.; Garciaraso, A. J.
Org. Chem. 1990, 55, 991.
11, 16, 19, 20 and 26 are available as Supporting Infor-
mation. Supplementary data associated with this article
25. Carboxylic acid 25a was the major product isolated and can
be accountedfor as follows. Alkaline hydrolysis of 24 to give
the desired product 25b would involve attack by hydroxide
on C7to give intermediate 24a, followed byhydrolysis of the
b-carbonyl with loss of acetate. Unexpected product 25a
could arise either via (a) hydrolysis of the carbonyl of
tautomer 24b with loss of acetone, or via (b) direct attack by
hydroxide on C5 of 24 with loss of propyne. Attack of C5 in
either 24 or 24b would occur more readily than when a 4-
methoxy substituent is present due to reduced steric
hindrance and so can explain the different response to
hydrolysis of 21 and 24. We investigated the hydrolysis of a
model system that involved isolation of its diketone
intermediate prior to further hydrolysis (data not shown),
the result of which suggests that only mechanism (a)
accounts for the production of 25a.
References and notes
1. Nielsen, S. F.; Christensen, S. B.; Cruciani, G.; Kharazmi,
A.; Liljefors, T. J. Med. Chem. 1998, 41, 4819.
2. Li, R. S.; Kenyon, G. L.; Cohen, F. E.; Chen, X. W.;
Gong, B. Q.; Dominguez, J. N.; Davidson, E.; Kurzban,
G.; Miller, R. E.; Nuzum, E. O.; Rosenthal, P. J.;
McKerrow, J. H. J. Med. Chem. 1995, 38, 5031.
3. Lin, Y. M.; Zhou, Y. S.; Flavin, M. T.; Zhou, L. M.; Nie,
W. G.; Chen, F. C. Bioorg. Med. Chem. 2002, 10, 2795.
4. Lopez, S. N.; Castelli, M. V.; Zacchino, S. A.; Dominguez,
J. N.; Lobo, G.; Charris-Charris, J.; Cortes, J. C. G.;
Ribas, J. C.; Devia, C.; Rodriguez, A. M.; Enriz, R. D.
Bioorg. Med. Chem. 2001, 9, 1999.
5. Pouget, C.; Lauthier, F.; Simon, A.; Fagnere, C.; Basly, J.
P.; Delage, C.; Chulia, A. J. Bioorg. Med. Chem. Lett.
2001, 11, 3095.
6. Ducki, S.; Mackenzie, G.; Lawrence, N. J.; Snyder, J. P.
J. Med. Chem. 2005, 48, 457.
7. Ballesteros, J. F.; Sanz, M. J.; Ubeda, A.; Miranda, M. A.;
Iborra, S.; Paya, M.; Alcaraz, M. J. J. Med. Chem. 1995,
38, 2794.
8. Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R.
M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.;
Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti,
V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel,
K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988,
31, 2235.
O
5
O
O
4
O
O
O
O
7
O
O
O
O
O
O
O
24
24a
24b
26. Schmitz, A.; Sankaranarayanan, A.; Azam, P.; Schmidt-
Lassen, K.; Homerick, D.; Hansel, W.; Wulff, H. Mol.
Pharmacol. 2005, 68, 1254.