10.1002/chem.202001990
Chemistry - A European Journal
ACS Catal. 2016, 6, 3106-3112; d) Artificial enzymes formed through directed assembly of molecular square
encapsulated epoxidation catalysts. M. L. Merlau, M. Del P. Mejía, S. T. Nguyen, J. T. Hupp, Angew. Chem. Int.
Ed. 2001, 40, 4239-4242; e) Encapsulated Cobalt–Porphyrin as a Catalyst for Size-Selective Radical-type
Cyclopropanation Reactions. M. Otte, P. F. Kuijpers, O. Troeppner, I. Ivanovic-Burmazovic, J. N. H. Reek, B. de
Bruin, Chem. Eur. J. 2014, 20 , 4880-4884; f) Design, preparation, and study of catalytic gated baskets. B.-Y.
Wang, T. Žujović, D. A. Turner, C. M. Hadad, J. D. Badjić, J. Org. Chem. 2012, 77, 2675-88.
5 Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy.
Bistri, O., Reinaud, O. Org Biomol. Chem. 2015, 13, 2849-2865.
For examples, see: a) Cavitands as chaperones for monofunctional and ring-forming reactions in water. N.-W.
Wu, J. Rebek, Jr., J. Am. Chem. Soc. 2016, 138, 7512-7515; b) Cavitands as reaction vessels and blocking
groups for selective reactions in water. D. Masseroni, S. Mosca, M. P. Mower, D. G. Blackmond, J. Rebek,
Angew. Chem. Int. Ed. 2016, 55, 8290-8293; c) Cage-catalyzed Knoevenagel condensation under neutral
conditions in water. T. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012, 134, 162-164; d) Selective
hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn2+-
cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane). M.
Zulkefeli, A. Suzuki, M. Shiro, Y. Hisamatsu, E. Kimura, S. Aoki. Inorg. Chem. 2011, 50, 10113-10123; e) Recent
advances in molecular recognition in water: artificial receptors and supramolecular catalysis. E. A. Kataev, C.
Müller, Tetrahedron 2014, 70, 137-167; f) “Calix[4]-box” cages promote the formation of amide bonds in water in
the absence of coupling reagents. W.-X. Feng, L. Dai, S.-P. Zheng, A. van der Lee, C.-Y. Su, M. Barboiu, Chem.
Commun. 2018, 54, 9738-9740.
6 NHC-capped cyclodextrins (ICyDs): insulated metal complexes, commutable multicoordination sphere, and
cavity-dependent catalysis. M. Guitet, P. Zhang, F. Marcelo, C. Tugny, J. Jiménez-Barbero, O. Buriez, C.
Amatore, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Y. Zhang, S. Roland, M. Ménand, M. Sollogoub,
Angew. Chem. Int. Ed. 2013, 52, 7213-7218.
7 Artificial chiral metallo-pockets including a single metal serving as structural probe and catalytic center. P.
Zhang, C. Tugny, J. Meijide Suárez, M. Guitet, E. Derat, N. Vanthuyne, Y. Zhang, O. Bistri, V. Mouriès-Mansuy,
M. Ménand, S. Roland, L. Fensterbank, M. Sollogoub, Chem. 2017, 3, 174-191.
8 Cyclodextrin cavity-induced mechanistic switch in copper-catalyzed hydroboration. P. Zhang, J. Meijide Suarez,
T. Driant, E. Derat, Y. Zhang, M. Ménand, S. Roland, M. Sollogoub, Angew. Chem. Int. Ed. 2017, 56, 10821-
10825.
9 G. Xu, S. Leloux, P. Zhang, J. Meijide Suárez, Y. Zhang, E. Derat, M. Ménand, O. Bistri-Aslanoff, S. Roland, T.
Leyssens, O. Riant, M. Sollogoub, Angew. Chem. Int. Ed. 2020, 59, 7591-7597.
10 Benzimidazolium- and benzimidazolilydene-capped cyclodextrins: New perspectives in anion encapsulation
and gold-catalyzed cycloisomerization of 1,6-enynes. Z. Kaya, L. Andna, D. Matt, E. Bentouhami, J.-P. Djukic, D.
Armspach, Chem. Eur. J. 2018, 24 ,17921-17926.
11 Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: the regioselective stripping of
perbenzylated sugars and cyclodextrins. T. Lecourt, A. J. Pearce, A. Herault, M. Sollogoub, P. Sinaÿ, Chem. Eur.
J. 2004, 10, 2960; μ-Waves avoid large excesses of diisobutylaluminium-hydride (DIBAL-H) in the debenzylation
of perbenzylated α-cyclodextrin. E. Zaborova, Y. Blériot, M. Sollogoub, Tetrahedron Lett. 2010, 51, 1254.
12 Multiple Homo- and Hetero-functionalizations of α-Cyclodextrin through Oriented Deprotections. S. Guieu, M.
Sollogoub, J. Org. Chem. 2008, 73, 2819.
13 An efficient preparation of 6(I,IV) dihydroxy permethylated beta-cyclodextrin. T. Lecourt, J.-M. Mallet, P. Sinaÿ,
Carbohydr. Res. 2003, 338, 2417.
14 Catalytic organic reactions in water toward sustainable society. T. Kitanosono, K. Masuda, P. Xu, S.
Kobayashi, Chem. Rev. 2018, 118, 679-746.
15 In vivo gold catalysis involving complex aqueous media has been reported, for examples see: a) Concurrent
and orthogonal gold(I) and ruthenium(II) catalysis inside living cells. C. Vidal, M. Tomás-Gamasa, P. Destito, F.
López, J. L. Mascareñas, Nature Comm. 2018, 9, 1913; b) In vivo gold complex catalysis within live mice. K.
Tsubokura, K. K. H. Vong, A. R. Pradipta, A. Ogura, S. Urano, T. Tahara, S. Nozaki, H. Onoe, Y. Nakao, R.
Sibgatullina, A. Kurbangalieva, Y. Watanabe, K. Tanaka, Angew. Chem. Int. Ed. 2017, 56, 3579-3584.
16 Water-soluble Au(I) complexes, their synthesis and applications. Y. R. Hristova, B. Kemper, P. Besenius,
Tetrahedron 2013, 69, 10525-10533.
17 Silver-catalyzed reactions of alkynes: recent advances. G. Fanga, X. Bi, Chem. Soc. Rev. 2015, 44, 8124-
8173.
18 N-heterocyclic carbene transition metal complexes for catalysis in aqueous media. H. Diaz Velazquez, F.
Verpoort, Chem. Soc. Rev., 2012, 41, 7032-7060.
19 Water in N-heterocyclic carbene-assisted catalysis. E. Levin, E. Ivry, C. E. Diesendruck N. G. Lemcoff, Chem.
Rev. 2015, 115, 4607-4692.
20 Synthesis and application of water-soluble NHC transition-metal complexes. L.-A. Schaper, S. J. Hock, W. A.
Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2013, 52, 270-289.
21 Reusable N‑heterocyclic carbene complex catalysts and beyond: A perspective on recycling strategies. W.
Wang, L. Cui, P. Sun, L. Shi, C. Yue, F. Li, Chem. Rev. 2018, 118, 9843-9929.
22 Sustainable Gold Catalysis in Water Using Cyclodextrin-tagged NHC-Gold Complexes. H. Sak, M. Mawick, N.
Krause, ChemCatChem 2019, 11, 1-10.
This article is protected by copyright. All rights reserved.