base complexes, and dirhodium complexes with moderate
to good enantioselectivity.4,5 Development of new efficient
methods for the synthesis of sulfamidates is still a challenge.
According to the retrosynthetic analysis, we envisioned that
direct asymmetric hydrogenation of the corresponding cyclic
imines is the most convenient and efficient route to chiral
cyclic sulfamidates (Scheme 1).
functionalized ketones by us9 and other groups,10 and only
activated imines gave high reactivity and enantioselectivity.
In our ongoing efforts toward the development of asymmetric
hydrogenation,9,11 we became interested in exploring the
practical synthesis of enantiopure cyclic sulfamidates via
asymmetric hydrogenation. Herein, we present an efficient
method for the enantioselective synthesis of cyclic sulfam-
idates by the asymmetric hydrogenation of activated imines
2 and 5 using Pd(CF3CO2)2/(S,S)-f-binaphane as catalyst, and
up to 99% ee was obtained.
Scheme 1. Synthesis and Application of Sulfamidates
Cyclic imines (2, 5) can be conveniently prepared from
hydroxy ketones (1, 4) and sulfamoyl chloride by modified
literature procedures12 (Scheme 2).
Scheme 2. Synthesis of Cyclic Activated Imines
The catalytic asymmetric hydrogenation of imines has
drawn much attention since it provides one of the most
efficient routes for the synthesis of chiral amines,6,7 and most
of the catalysts are chiral Ir, Rh, and Ru complexes.6
Recently, chiral palladium complexes8 have been success-
fully applied to asymmetric hydrogenation of imines and
(4) (a) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M.
Angew. Chem., Int. Ed. 2002, 41, 3465. (b) Liang, J.-L.; Yuan, S.-X.; Huang,
J.-S.; Che, C.-M. J. Org. Chem. 2004, 69, 3610–3619. (c) Zhang, J.; Chan,
Imine 2a is chosen as a model substrate for the optimiza-
tion of reaction conditions, and the results are shown in Table
1. Based on our previous work on asymmetric hydrogenation
of activated imines,9b,c initial experiments were carried out
in trifluoroethanol (TFE) in the presence of 2.0 mol % of
Pd(CF3CO2)2/(S)-SynPhos. The product was isolated in
quantitative yield with moderate enantioselectivity (44% ee).
Several chiral bisphosphine ligands were examined (entries
1-4, Table 1). Fortunately, up to 97% ee was achieved using
the (S,S)-f-binaphane ligand,13 which was successfully
developed by Zhang for asymmetric hydrogenation of imines.
The absolute configuration of product 3a was assigned by
comparison of rotation sign with literature datum after the
conversion14 of 3a into known N-benzyl derivatives.3a Next,
different solvents were tested, and a strong solvent-dependent
phenomenon was observed. CH2Cl2, THF, and MeOH led
P. W. H.; Che, C.-M Tetrahedron Lett. 2005, 35, 5403
.
(5) Fruit, C.; Mu¨ller, P. Tetrahedron: Asymmetry 2004, 15, 1019
.
(6) (a) Kobayashi, S.; Ishitani, H Chem. ReV. 1999, 99, 1069. (b) Brunel,
J. M. Recent Res. DeVel. Organic Chem. 2003, 7, 155. (c) Palmer, M. J.;
Wills, M Tetrahedron: Asymmetry 1999, 10, 2045 Recent examples. (d)
Chemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089. (e) Reetz, M. T.;
Bondarev, O. Angew. Chem., Int. Ed. 2007, 46, 4523. (f) Li, L.; Wu, J. S.;
Wang, F.; Liao, J.; Zhang, H.; Lian, C. X.; Zhu, J.; Deng, J. G. Green
Chem. 2007, 9, 23. (g) Huang, X. H.; Ying, J. Y. Chem. Commun. 2007,
1825. (h) Imamoto, T.; Iwadate, N.; Yoshida, K. Org. Lett. 2007, 9, 2289.
(i) Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem.
Soc. 2006, 128, 12886. (j) Shang, G.; Yang, Q.; Zhang, X. Angew. Chem.,
Int. Ed. 2006, 45, 6360. (k) Imamoto, T.; Iwadate, N.; Yoshida, K. Org.
Lett. 2006, 8, 2289. (l) Trifonova, A.; Diesen, J. S.; Andersson, P. G. Chem.
Eur. J. 2006, 12, 2318. (m) Trifonova, A.; Diesen, J. S.; Andersson, P. G.
Chem. Eur. J. 2006, 12, 2318. (n) Wu, J. S.; Wang, F.; Ma, Y. P.; Cui,
X. C.; Cun, L.; Zhu, F. J.; Deng, J. G.; Yu, B. L. Chem. Commun. 2006,
1766. (o) Moessner, C.; Bolm, C. Angew. Chem., Int. Ed. 2005, 44, 7564.
(p) Nugent, T. C.; Wakchaure, V. N.; Ghosh, A. K.; Mohanty, R. R. Org.
Lett. 2005, 7, 4967. (q) Liu, P. N.; Gu, P. M.; Deng, J. G.; Tu, Y. Q.; Ma,
Y. P. Eur. J. Org. Chem. 2005, 3221. (r) Trifonova, A.; Diesen, J. S.;
Chapman, C. J.; Andersson, P. G. Org. Lett. 2004, 6, 3825. (s) Jiang, X.-
B.; Minnaard, A. J.; Hessen, B.; Feringa, B. L.; Duchateau, A. L. L.;
Andrien, J. G. O.; Boogers, J. A. F.; de Vries, J. G. Org. Lett. 2003, 5,
(9) (a) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Org. Lett. 2005, 7, 3235.
(b) Wang, Y.-Q.; Zhou, Y.-G. Synlett 2006, 1189. (c) Wang, Y.-Q.; Sheng-
Mei Lu; Zhou, Y.-G J. Org. Chem. 2007, 72, 3729.
1503. (t) Spindler, F.; Blaser, H.-U. AdV. Synth. Catal. 2001, 343, 68
.
(7) For reviews of the organo-catalyzed asymmetric reduction of imines,
see: (a) You, S.-L Chem. Asian J. 2007, 2, 820. (b) Ouellet, S. G.; Walji,
A. M.; MacMillan, D. W. C Acc. Chem. Res. 2007, 40, 1327 Recent
examples. (c) Guo, Q.-S.; Du, D.-M.; Xi, J. Angew. Chem., Int. Ed. 2008,
47, 759. (d) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2007,
46, 4562. (e) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129,
5830. (f) Kang, Q.; Zhao, Z.-A.; You, S.-L. AdV. Synth. Catal. 2007, 349,
1657. (g) Wang, Z.; Ye, X.; Wei, S.; Wu, P.; Zhang, A.; Sun, J. Org. Lett.
2006, 8, 999. (h) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2006, 128, 84. (i) Pei, D.; Wang, Z.; Wei, S.; Zhang,
Y.; Sun, J. Org. Lett. 2006, 8, 5913. (j) Wang, Z.; Cheng, M.; Wu, P.;
Wei, S.; Sun, J. Org. Lett. 2006, 8, 3045. (k) Rueping, M.; Antonchick,
A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. (l) Rueping,
M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45,
6751. (m) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed.
2005, 44, 7424. (n) Malkov, A. V.; Mariani, A.; MacDougall, K. N.;
(10) (a) Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313. (b)
Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem. 2004, 69, 5132.
(c) Yang, Q.; Deng, J. G.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45,
3832.
(11) (a) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. (b) Wang, D.-
W.; Zeng, W.; Zhou, Y.-G Tetrahedron: Asymmetry 2007, 18, 1103. (c)
Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed.
2006, 45, 2260. (d) Zhao, Y.-J.; Wang, Y.-Q.; Zhou, Y.-G. Chin. J. Catal.
2005, 26, 737. (e) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin. J. Org. Chem.
2005, 25, 634. (f) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. AdV. Synth. Catal.
2004, 346, 909. (g) Yang, P.-Y.; Zhou, Y.-G. Tetrahedron: Asymmetry 2004,
15, 1145. (h) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou,
Y.-G. J. Am. Chem. Soc. 2003, 125, 10536
.
(12) (a) Kamal, A.; Sattur, P. B. Synthesis 1981, 272. (b) Okada, M.;
Iwashita, S.; Koizumi, N. Tetrahedron Lett. 2000, 41, 7047.
(13) (a) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425.
(b) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Chem. 2003, 68, 4120.
(14) Posakony, J. J.; Grierson, J. R.; Tewson, T. J. J. Org. Chem. 2002,
67, 5164.
Koe`ovsky´, P. Org. Lett. 2004, 6, 2253
.
(8) (a) Tsuji, J. In Palladium Reagents and Catalysis; John Wiley &
Sons: Chichester, UK, 2004. (b) Tietze, L. F.; Ila, H.; Bell, H. P. Chem.
ReV. 2004, 104, 3453.
2072
Org. Lett., Vol. 10, No. 10, 2008