1802 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 7
Letters
(2) Skrepnek, G. H.; Skrepnek, S. T. Epidemiology, clinical and economic
burden, and natural history of chronic obstructive pulmonary disease
and asthma. Am. J. Managed Care 2004, 10, S129–S138.
(3) Tashkin, D. P.; Celli, B.; Senn, S.; Burkhart, D.; Kesten, S.; Menjoge,
S.; Decramer, M. A 4-tear trial of tiotropium in chronic obstructive
pulmonary disease. N. Engl. J. Med. 2008, 359, 1543–1554.
(4) Belvisi, M. G.; Hele, D. J.; Birell, M. A. New anti-inflammatory
therapies and targets for asthma and chronic obstructive pulmonary
disease. Expert Opin. Ther. Targets 2004, 8, 265–285.
(5) Bergeron, C.; Boulet, L. Structural changes in airway diseases.
characteristics, mechanisms, consequences, and pharmacologic modu-
lation. Chest 2006, 129, 1068–1087.
(6) Lagente, V.; Manoury, B.; Nenan, S.; le Quement, C.; Martin-Chouly,
C.; Boichot, E. Role of matrix metalloproteinases in the devlopment
of airway inflammation and remodeling. Braz. J. Med. Biol. Res. 2005,
38, 1521–1530.
(7) Shapiro, S. D.; Kobayashi, D. K.; Ley, T. J. Cloning and characteriza-
tion of a unique elastolytic metalloproteinase produced by human
alveolar macrophages. J. Biol. Chem. 1993, 26, 23824–23829.
Figure 3. Oral efficacy of 14 in rhMMP-12 induced lung inflammation
(5 mg/kg, b.i.d. po vs MMP-12 plus vehicle).
by treatment with methyl chloroformate in the presence of a
mild base to generate the penultimate tert-butyl ester 39 in 85%
yield.
The tert-butyl ester 39 was hydrolyzed under acidic conditions
to generate the desired final product 14 with 73% overall yield
from 34. Originally, the (L)-valine methyl ester was used for
the preparation of 14. However, saponification of the corre-
sponding methyl ester penultimate under basic conditions
resulted in 14 but with contamination from the decomposition
of the carbamate moiety. Thus, it was replaced with the tert-
butyl ester. Chiral analysis of 14 confirmed that there was no
impurity from epimerization of the chiral center during the
synthesis.
To evaluate the compounds in vivo, an MMP-12 dependent
pulmonary inflammatory response was induced in C57BL/6
mice by intranasal administration of recombinant human (rh)
MMP-1218 for 3 consecutive days. Inflammation within the
bronchoalveolar lavage fluid was then quantified 24 h after the
final dose of rhMMP-12. Compound 14 showed significant
reduction in total BAL inflammation (>50% inhibition, p <
0.001) and absolute macrophages (>70% inhibition, P < 0.001)
compared to rhMMP-12 plus vehicle alone when administered
at 30 mg/kg (po, q.d.) 2 h prior to each of the 3 doses of
rhMMP-12. Further studies determined that the minimum
efficacious dose for 14 was 5 mg/kg (po, b.i.d.) in this model
(Figure 3).
In summary, molecules with druglike properties for the MMP-
12 program were obtained via modification of the potent MMP-
13 inhibitor 1. The key factor that reverses the selectivity profile
of 1 is the replacement of the biphenyl core with the tricyclic
scaffold, which also offers metabolic stability and good PK
properties. Compound 14, a potent, selective, and orally
available MMP-12 inhibitor was identified. The demonstrated
ability to attenuate pulmonary inflammation supports the
therapeutic potential of this compound for the treatment of
COPD.
(8) Hautamaki, R. D.; Kobayashi, D. K.; Senior, R. M.; Shapiro, S. D.
Requirement for macrophage elastase for cigarette smoke-induced
emphysema in mice. Science 1997, 277, 2002–2004.
(9) Leclerc, O.; Lagente, V.; Panquois, J.; Berthelier, C.; Artola, M.;
Eichholtz, T.; Bertrand, C. P.; Schmidlin, F. Involvement of MMP-
12 and phosphodiesterase type 4 in cigarette smoke-induced inflam-
mtion in mice. Eur. Respir. J. 2006, 27, 1102–110.
(10) Churg, A.; Wang, R. D.; Tai, H.; Wang, X.; Xie, C.; Dai, J.; Shapiro,
S. D.; Wright, J. L. Macrophage metalloelastase mediates acute
cigarette smoke-induced inflammation via tumor necrosis factor-a
release. Am. J. Respir. Crit. Care Med. 2003, 167, 1083–1089.
(11) Wu, J.; Rush, T. S.; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.;
Xu, Z. B.; Skotnicki, J.; Levin, J. I.; Lovering, F. E. Identification of
potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett.
2005, 15, 4105–4109.
(12) Markus, M. A.; Dwyer, B.; Wolfrom, S.; Li, J.; Li, W.; Malakian, K.;
Wilhelm, J.; Tsao, D. H. H. Solution structure of wild-type human
matrix metalloprotease 12 (MMP-12) in complex with a tight-binding
inhibitor. J. Biomol. NMR 2008, 41, 55–60.
(13) Hu, Y.; Xiang, S.; DiGrandi, M. J.; Du, X.; Ipek, M.; Laakso, L. M.;
Li, J.; Li, W.; Rush, T. S.; Schmid, J.; Skotnicki, J. S.; Tam, S.;
Thomason, J. R.; Wang, Q.; Levin, J. I. Potent, selective and orally
bioavailable matrix metalloproteinase-13 inhibitors for the treatment
of osteoarthritis. Bioorg. Med. Chem. 2005, 13, 6629–6644.
(14) Li, J.; Rush, T. R.; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason,
J. R.; Xiang, S.; Skotnicki, J. S.; Tam, S.; Cunningham, K. M.;
Chockalingam, P. S.; Morris, E. A.; Levin, J. I. Synthesis and SAR
of highly selective MMP-13 inhibitor. Bioorg. Med. Chem. Lett. 2005,
15, 4961–4966.
(15) ForDBFasascaffoldforPDE4inhibitors,seethefollowing:Kodimuthali,
A.; Jabaris, S. S. L.; Pal, M. Recent advances on phosphodiesterase 4
inhibitors for the treatment of asthma and chronic obstructive
pulmonary disease. J. Med. Chem. 2008, 51, 5471–5489, and refer-
ences cited therein. For MMP inhibitors, see the following:O’Brien,
P. M.; Picard, J. A.; Sliskovic, D. R.; White, A. D. Method of
Inhibiting Matrix Metalloproteases. U.S. Patent 6906092, 2005.
(16) Takashi Keumi, T.; Tomioka, N.; Hamanaka, K.; Kakihara, H.;
Fukushima, M.; Morita, T.; Kitajima, H. Positional reactivity of
dibenzofuran in electrophilic substitutions. J. Org. Chem. 1991, 56,
4671–4677.
(17) Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.;
Hashizume, H.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.;
Kishino, J.; Ohtani, M. Synthesis and biological activity of various
derivatives of a novel class of potent, selective, and orally active
prostaglandin D2 receptor antagonists. 1. Bicyclo[2.2.1]heptane deriva-
tives. J. Med. Chem. 2003, 46, 2436–2445.
(18) Nenan, S.; Lagente, V.; Planquois, J.; Hitier, S.; Berna, P.; Bertrand,
C. P.; Biochot, E. Metalloelastase (MMP-12) induced inflammatory
response in mice airways: effects of dexamethasone, rolipram and
marimastat. Eur. J. Pharmacol. 2007, 559, 75–81.
Acknowledgment. The authors thank Thiru Singanallore and
Jean Schmid for synthetic support; Nelson Huang, Walter
Massefski, and Ning Pan for analytical support; Susan Fish,
Andrea Bree, and Mark Collins for supporting pharmacology
studies.
Supporting Information Available: Details of syntheses and
assays and characterization of all compounds. This material is
(19) Li, W.; Li, J.; Wu, Y.; Tam, S.; Mansour, T. S.; Sypek, J. P.; Mcfayden,
I.; Hotchandani, R.; Wu, J. Preparation of Tricyclic Compounds as
Matrix Metalloprotease Inhibitors. PCT Int. Appl. WO 2008057254
A2, 2008.
References
(1) Pauwels, R. A.; Rabe, K. F. Burden and clinical features of chronic
obstructive pulmonary disease (COPD). Lancet 2004, 364, 613–620.
JM900093D