J. Chen et al. / Tetrahedron 68 (2012) 8905e8907
8907
catalytic system (Table 2, entries 7e9, 16e18, 22e24, 28, 29, 34, 35,
Supplementary data
38, 40) and provided a novel route to the targeted products in
moderate to good yields, making further elaborations of the cor-
responding biaryl products possible.
Supplementary data associated with this article can be found in
Furthermore, the present synthetic route to unsymmetrical
diaryl ethers was successfully applied to the gram-scale operations.
For instance, the O-arylation of p-nitrobenzaldehyde (1.511 g) with
phenol (1.882 g) provided the desired product 3aa in 88% yield.
References and notes
1. (a) Rao, A. V. R.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. Chem. Rev. 1995, 95, 2135; (b)
Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.; Solomon, M. E.;
Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Angew. Chem., Int. Ed. 1998, 37,
2708; (c) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2003, 125, 903; (d) Van Beek, D.; Fossum, E. Macromolecules
2009, 42, 4016; (e) Liu, L. B.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Cheti,
A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y. I.; Zhang, Y. H.;
Bellon, S. F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M. H.;
Harmange, J. C.; Dussault, I.; Kimt, T. S. J. Med. Chem. 2008, 51, 3688; (f) Su, D.;
Lim, J. J.; Tinney, E.; Wan, B.; Young, M. B.; Anderson, K. D.; Rudd, D.; Munshi, V.;
Bahnck, C.; Felock, P. J.; Lu, M.; Lai, M.; Touch, S.; Moyer, G.; DiStefano, D. J.;
Flynn, J. A.; Liang, Y.; Sanchez, R.; Perlow-Poehnelt, R.; Miller, M.; Vacca, J. P.;
Williams, T. M.; Anthony, N. J. J. Med. Chem. 2009, 52, 7163; (g) Patch, R. J.; Searle,
L. L.; Kim, A. J.; De, D.; Zhu, X.; Askari, H. B.; O’Neill, J. C.; Abad, M. C.; Rentzeperis,
D.; Liu, J.; Kemmerer, M.; Lin, L.; Kasturi, J.; Geisler, J. G.; Lenhard, J. M.; Player, M.
R.; Gaul, M. D. J. Med. Chem. 2011, 54, 788.
3. Conclusion
In summary, an efficient, ligand-free copper-catalyzed method
for the O-arylation of nitroarenes with phenols was developed. The
efficiency of this transformation was demonstrated by compati-
bility with a wide range of groups. This protocol provided a new
avenue for developing CeO bond-forming reactions leading to ac-
cess unsymmetrical diaryl ethers. Applications of this copper-
catalyzed arylation using nitroarenes as a new arylation reagent
in organic synthesis are ongoing in our laboratory.
2. (a) Ullmann, F. Chem. Ber. 1904, 37, 853; (b) Lindley, J. Tetrahedron 1984, 40, 1433
and references cited therein.
3. Kim, H. J.; Kim, M.; Chang, S. Org. Lett. 2011, 13, 2368.
4. Experimental section
4.1. General
4. For recent examples of palladium-catalyzed diaryl ethers formation, see: (a)
Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121,
3224; (b) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369; (c) Burgos, C. H.; Barder, T. E.;
Huang, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 4321; (d) Shelby, Q.;
Kataoka, N.; Mann, G.; Hartwig, J. J. Am. Chem. Soc. 2000, 122, 10718; (e)
Kawaguchi, K.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 5119; (f) Platon, M.;
Cui, L.; Mom, S.; Richard, P.; Saeys, M.; Hierso, J.-C. Adv. Synth. Catal. 2011, 353,
3403; (g) Salvi, L.; Davis, N. R.; Ali, S. Z.; Buchwald, S. L. Org. Lett. 2012, 14, 170.
5. For recent examples of copper-catalyzed diaryl ethers formation, see: (a)
Chemicals and solvents were either purchased or purified by
standard techniques without special mention. Melting points were
uncorrected and recorded on Digital Melting Point Apparatus WRS-
1B. 1H NMR and 13C NMR spectra were recorded on a Bruker 300
spectrometer or Bruker 500 spectrometer using CDCl3 as the sol-
vent with TMS as an internal standard. All reactions were con-
€
Jung, N.; Brase, S. J. Comb. Chem. 2009, 11, 47; (b) Marcoux, J.-F.; Doye, S.;
Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539; (c) Buck, E.; Song, J.;
Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002, 4, 1623;
(d) Cristau, H. J.; Cellier, P. P.; Hamada, S.; Spindler, J.-F.; Taillefer, M. Org.
Lett. 2004, 6, 913; (e) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609; (f)
Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.dEur. J. 2006, 12, 3636; (g)
Ouali, A.; Spindler, J.-F.; Taillefer, M. Adv. Synth. Catal. 2006, 348, 499; (h)
Cai, Q.; Zou, B.; Ma, D. Angew. Chem., Int. Ed. 2006, 45, 1276; (i) Lipshutz, B.
H.; Unger, J. B.; Taft, B. R. Org. Lett. 2007, 9, 1089; (j) Altman, R. A.;
Buchwald, S. L. Org. Lett. 2007, 9, 643; (k) Lv, X.; Bao, W. J. Org. Chem. 2007,
72, 3863; (l) Ouali, A.; Spindler, J.-F.; Jutand, A.; Taillefer, M. Adv. Synth.
Catal. 2007, 349, 1906; (m) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799; (n)
Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G. Tetrahedron
2010, 66, 9009; (o) Zhang, Q.; Wang, D.; Wang, X.; Ding, K. J. Org. Chem.
2009, 74, 7187; (p) Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75, 1791; (q)
Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49,
2185; (r) Benyahya, S.; Monnier, F.; Man, M. W. C.; Bied, C.; Ouazzani, F.;
Taillefer, M. Green Chem. 2009, 11, 1121; (s) Yong, F.-F.; Teo, Y.-C.; Yan, Y.-K.;
Chua, G.-L. Synlett 2012, 101.
6. For recent examples of iron-catalyzed diaryl ethers formation, see: (a) Bistri, O.;
Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586; (b) Xia, N.; Taillefer, M.
Chem.dEur. J. 2008, 14, 6037; (c) Liu, X.; Zhang, S. Synlett 2011, 268; (d)
Arundhathi, R.; Damodara, D.; Likhar, P. R.; Kantam, M. L.; Saravanan, P.;
Magdaleno, T.; Kwonc, S. H. Adv. Synth. Catal. 2011, 353, 1591; (e) Qu, X.; Li, T.;
Zhu, Y.; Sun, P.; Yang, H.; Mao, J. Org. Biomol. Chem. 2011, 9, 5043.
7. (a) Zheng, X.; Ding, J.; Chen, J.; Gao, W.; Liu, M.; Wu, H. Org. Lett. 2011, 13,
1726; (b) Zhang, J.; Chen, J.; Liu, M.; Zheng, X.; Ding, J.; Wu, H. Green Chem.
2012, 14, 912.
ducted
using
standard
Schlenk
techniques.
Column
chromatography was performed using EM Silica gel 60 (300e400
mesh).
4.2. General procedure for the synthesis of unsymmetrical
diaryl ethers
Under N2 atmosphere, a Schlenk tube was charged with nitro-
arenes 1 (0.5 mmol), phenols 2 (1.0 mmol), Cu(OAc)2$H2O (5 mol
%), and Cs2CO3 (1.0 mmol) in DMF (3 mL) at room temperature.
After that, the mixture was stirred constantly at 100 ꢀC (oil bath
temperature) for 4 h. After the completion of the reaction, as
monitored by TLC and GCeMS analysis, the reaction mixture was
cooled to room temperature, diluted with ethyl acetate, and fil-
trated. The filtrate was concentrated under vacuum, and the
resulting residue was purified by silica gel column chromatography
(petroleum ether/ethyl acetate) to afford the desired arylated
product 3.
8. (a) Qin, C.; Wu, H.; Cheng, J.; Chen, X.; Liu, M.; Zhang, W.; Su, W.; Ding, J. J. Org.
Chem. 2007, 72, 4102; (b) Qin, C.; Wu, H.; Chen, J.; Liu, M.; Cheng, J.; Su, W.; Ding,
J. Org. Lett. 2008, 10, 1537; (c) Zheng, H.; Zhang, Q.; Chen, J.; Liu, M.; Cheng, S.;
Ding, J.; Wu, H.; Su, W. J. Org. Chem. 2009, 74, 943; (d) Xu, X.; Chen, J.; Gao, W.;
Wu, H.; Ding, J.; Su, W. Tetrahedron 2010, 66, 2433; (e) Zhang, J.; Chen, J.; Ding, J.;
Liu, M.; Wu, H. Tetrahedron 2011, 67, 9347; (f) Lu, W.; Chen, J.; Liu, M.; Ding, J.;
Gao, W.; Wu, H. Org. Lett. 2011, 13, 6114.
Acknowledgements
We thank the National Natural Science Foundation of China
(Nos. 21102105 and 21172175) and Natural Science Foundation of
Zhejiang Province (No. LY12B02011) for financial support.