Molecules 2017, 22, 2060
9 of 10
17. Walsh, R.B.; Padgett, C.W.; Metrangolo, P.; Resnati, G.; Hanks, T.W.; Pennington, W.T. Crystal engineering
through halogen bonding: Complexes of nitrogen heterocycles with organic iodides. Cryst. Growth Des. 2001
,
18. Cavallo, G.; Biella, S.; Lü, J.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halide anion-templated
assembly of di- and triiodoperfluorobenzenes into 2D and 3D supramolecular networks. J. Fluorine Chem.
19. Roper, L.C.; Präsang, C.; Kozhevnikov, V.N.; Whitwood, A.C.; Karadakov, P.B.; Bruce, D.W. Experimental and
theoretical study of halogen-bonded complexes of DMAP with di- and triiodofluorobenzenes. A complex
with a very short N···I halogen bond. Cryst. Growth Des. 2010, 10, 3710–3720. [CrossRef]
20. Lucassen, A.C.B.; Karton, A.; Leitus, G.; Shimon, L.J.W.; Martin, J.M.L.; van der Boom, M.E. Co-crystallization
of sym-triiodo-trifluorobenzene with bipyridyl donors: Consistent formation of two instead of anticipated
three N···I halogen bonds. Cryst. Growth Des. 2007, 7, 386–392. [CrossRef]
21. Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Mutual induced coordination in halogen-bonded
anionic assemblies with (6,3) cation-templated topologies. Chem. Commun. 2008, 1635–1637. [CrossRef]
22. Cauliez, P.; Polo, V.; Roisnel, T.; Llusar, R.; Fourmigué, M. The thiocyanate anion as a polydentate halogen
bond acceptor. CrystEngComm 2010, 12, 558–566. [CrossRef]
23. Jeon, I.-R.; Mathonière, C.; Clérac, R.; Rouzières, M.; Jeannin, O.; Trzop, E.; Collet, E.; Fourmigué, M. Photoinduced
reversible spin-state switching of an Fe(III) complex assisted by a halogen-bonded supramolecular network.
24. Berger, G.; Roeben, K.; Soubhye, J.; Wintjens, R.; Meyer, F. Halogen bonding in multi-connected 1,2,2-triiodo-
alkene involving geminal and/or vicinal iodines: A crystallographic and DFT study. CrystEngComm 2016
,
25. Pfrunder, M.C.; Micallef, A.S.; Rintoul, L.; Arnold, D.P.; Davy, K.J.P.; McMurtrie, J. Exploitation of
the Menshutkin reaction for the controlled assembly of halogen bonded architectures incorporating
1,2-diiodotetrafluorobenzene and 1,3,5-triiodotrifluorobenzene. Cryst. Growth Des. 2012, 12, 714–724.
26. Jeon, I.-R.; Jeannin, O.; Clerac, R.; Rouzieres, M.; Fourmigue, M. Spin-state modulation of molecular Fe(III)
complexes via inclusion in halogen-bonded supramolecular networks. Chem. Commun. 2017, 53, 4989–4992.
27. Aakeröy, C.B.; Wijethunga, T.K.; Desper, J. Practical crystal engineering using halogen bonding: A hierarchy
based on calculated molecular electrostatic potential surfaces. J. Mol. Struct. 2014, 1072, 20–27. [CrossRef]
28. Raffo, P.A.; Cukiernik, F.D.; Baggio, R.F. The three-component cocrystal 1,3,5-trifluoro-2,4,6-triiodod-
benzene-pyridine N-oxide-water (1/2/1) built up by halogen bonds, hydrogen bonds and
Acta Cryst. 2015, C71, 84–88.
π-π interactions.
29. Aakeröy, C.B.; Wijethunga, T.K.; Desper, J. Constructing molecular polygons using halogen bonding and
bifurcated N-oxides. CrystEngComm 2014, 16, 28–31. [CrossRef]
30. Triguero, S.; Llusar, R.; Polo, V.; Fourmigué, M. Halogen bonding interactions of sym-triiodotrifluorobenzene
with halide anions: A combined structural and theoretical study. Cryst. Growth Des. 2008, 8, 2241–2247.
31. Kumar, V.; Pilati, T.; Terraneo, G.; Meyer, F.; Metrangolo, P.; Resnati, G. Halogen bonded Borromean networks
by design: Topology invariance and metric tuning in a library of multi component systems. Chem. Sci. 2017
,
32. Cardillo, P.; Corradi, E.; Lunghi, A.; Meille, S.V.; Messina, M.T.; Metrangolo, P.; Resnati, G. The N···
I
intermolecular interaction as a general protocol in the formation of perfluorocarbon-hydrocarbon
supramolecular architectures. Tetrahedron 2000, 56, 5535–5550. [CrossRef]
33. The normalized contact Nc is defined as the ratio DXY/(rX + rY), where DXY is the experimental distance
between the halogen bonded iodine atoms X and halide anions Y and rX and rY are the van der Waals radius
for iodine and the Pauling ionic radius of the halide anion Y, respectively. Nc is a useful indicator of the
relative interaction strength, more useful than the XB distance itself, because it allows distances between
different interacting sites to be meaningfully compared.
34. The interlayer distance is calculated as the distance between the mean square planes passing through the
anions of two adjacent layers.