A R T I C L E S
Nolan et al.
mechanisms can fail during periods of stress. Uncontrolled zinc
release occurs from protein-bound and vesicular stores following
blunt head trauma and as a result of stroke or seizure, and it is
implicated in subsequent neurodegeneration.24-29 Evidence
exists for a role of Zn(II) in the onset and pathogenesis of
Alzheimer’s disease.30 There are several mechanisms to explain
Zn(II) neurotoxicity, including rapid influx into mitochondria,
which triggers apoptosis following uncontrolled release.28,31 Of
particular relevance to some of the work described here is the
growing link between Zn(II) toxicity and oxidative stress.27,31,32
Despite this knowledge, many details regarding the functional
significance of Zn(II) in neurobiology remain elusive. This
situation has motivated the design of many new Zn(II) imaging
tools suitable for studies in living cells. Initially, aryl sulfon-
amide-based sensors, including N-(6-methoxy-8-quinolyl)-p-
toluenesulfonamide (TSQ) and its derivatives, were employed
to visualize chelatable Zn(II) in the mammalian hippocampus
and in live cells.33-36 Over the past six years, in part guided by
tactics used for Ca(II) sensing,37 significant advances in biologi-
cal Zn(II) sensor design have been made.2,38-41 Many sensors,
including the ACF,42 ZnAF,43,44 Fluo- and Rhod-Zn,45,46
Zinpyr,47-49 and QZ50 probes, provide visible excitation and
bright fluorescence in the Zn(II)-bound forms. Some of these
Figure 1. Symmetrical and tertiary-amine-based Zinpyr (ZP) and Zinspy
(ZS) sensors.
sensors have been employed in studies of Zn(II) neurobiol-
ogy.17,44,49,50 Small-molecule ratiometric Zn(II) sensors have
been documented,46,51-55 several of which have been applied
in vivo.53,54 Protein-based56-59 approaches have also emerged
as useful Zn(II) sensing tools, and several peptide-based60-62
strategies have been reported. Nevertheless, the design and
implementation of new Zn(II) imaging reagents is required to
continue advances in this field. Several recent initiatives44,50,63
address the need for Zn(II) sensors with varying affinities for
use in vivo, since estimated endogenous Zn(II) concentrations
vary widely, depending on the tissue or cell type under study.
We previously reported the Zinpyr (ZP)47-49 and Zinspy
(ZS)64 families of Zn(II) sensors, several of which are depicted
in Figure 1. The thioether-for-pyridyl substitution that gives the
ZS sensors was made with the aims of lowering Zn(II) affinity
and potentially modulating metal-ion selectivity relative to the
parent ZP compounds, which employ the di(2-picolyl)amine
(DPA) chelate. Although the ZS probes exhibit improved Zn(II)
selectivity and lower affinity Zn(II) binding as compared to their
DPA-based counterparts, they generally suffer from relatively
poor photophysical properties, including high background
fluorescence and weak (e2-fold) fluorescence enhancement with
Zn(II) coordination, at least for the tertiary amine-based systems.
These features preclude facile application of these sensors for
biological imaging of Zn(II).
(21) Colvin, R. A.; Fontaine, C. P.; Laskowski, M.; Thomas, D. Eur. J.
Pharmacol. 2003, 479, 171-185.
(22) Ebadi, M.; Iversen, P. L.; Hao, R.; Cerutis, D. R.; Rojas, P.; Happe, H. K.;
Murrin, L. C.; Pfeiffer, R. F. Neurochem. Int. 1995, 27, 1-22.
(23) Jacob, C.; Maret, W.; Vallee, B. L. Proc. Natl. Acad. Sci. U.S.A. 1998, 95,
3489-3494.
(24) Choi, D. W.; Koh, J. Y. Annu. ReV. Neurosci. 1998, 21, 347-375.
(25) Lee, J.-Y.; Cole, T. B.; Palmiter, R. D.; Koh, J.-Y. J. Neurosci. 2000, 20,
RC79 1-5.
(26) Lee, J.-Y.; Kim, J.-H.; Palmiter, R. D.; Koh, J.-Y. Exp. Neurol. 2003, 184,
337-347.
(27) Wei, G.; Hough, C. J.; Sarvey, J. M. Neuroscience (Oxford) 2004, 125,
867-877.
(28) Frederickson, C. J.; Maret, W.; Cuajungco, M. P. Neuroscientist 2004, 10,
18-25.
(29) Mocchegiani, E.; Bertoni-Freddari, C.; Marcellini, F.; Malavolta, M. Prog.
Neurobiol. 2005, 75, 367-390.
(30) Bush, A. I. Trends Neurosci. 2003, 26, 207-214.
(31) Bossy-Wetzel, E.; Talantova, M. V.; Lee, W. D.; Scholzke, M. N.; Harrop,
A.; Mathews, E.; Go¨tz, T.; Han, J.; Ellisman, M. H.; Perkins, G. A.; Lipton,
S. A. Neuron 2004, 41, 351-365.
(32) Zhang, Y.; Wang, H.; Li, J.; Jimenez, D. A.; Levitan, E. S.; Aizenman, E.;
Rosenberg, P. A. J. Neurosci. 2004, 24, 10616-10627.
(33) Frederickson, C. J.; Kasarskis, E. J.; Ringo, D.; Frederickson, R. E. J.
Neurosci. Methods 1987, 20, 91-103.
(34) Zalewski, P. D.; Forbes, I. J.; Betts, W. H. Biochem. J. 1993, 296, 403-
408.
(35) Coyle, P.; Zalewski, P. D.; Philcox, J. C.; Forbes, I. J.; Ward, A. D.; Lincoln,
S. F.; Mahadevan, I.; Rofe, A. M. Biochem. J. 1994, 303, 781-786.
(36) Zalewski, P. D.; Forbes, I. J.; Seamark, R. F.; Borlinghaus, R.; Betts, W.
H.; Lincoln, S. F.; Ward, A. D. Chem. Biol. 1994, 1, 153-161.
(37) Takahashi, A.; Camacho, P.; Lechileiter, J. D.; Herman, B. Physiol. ReV.
1999, 79, 1089-1125.
In the present article, we describe Zinspy sensors with
enhanced dynamic range. On the basis of several observations
(38) Kimura, E.; Koike, T. Chem. Soc. ReV. 1998, 27, 179-184.
(39) Kikuchi, K.; Komatsu, K.; Nagano, T. Curr. Opin. Chem. Biol. 2004, 8,
182-191.
(51) Henary, M. M.; Wu, Y.; Fahrni, C. J. Chem. Eur. J. 2004, 10, 3015-
3025.
(52) Woodroofe, C. C.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 11458-
(40) Jiang, P.; Guo, Z. Coord. Chem. ReV. 2004, 248, 205-229.
(41) Lim, N. C.; Freake, H. C.; Bru¨ckner, C. Chem. Eur. J. 2005, 11, 38-49.
(42) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem.,
Int. Ed. 2000, 39, 1052-1054.
11459.
(53) Taki, M.; Wolford, J. L.; O’Halloran, T. V. J. Am. Chem. Soc. 2004, 126,
712-713.
(54) Chang, C. J.; Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 1129-1134.
(43) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2002,
124, 6555-6562.
(55) Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006,
128, 6548-6549.
(44) Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem.
Soc. 2005, 127, 10197-10204.
(56) Thompson, R. B.; Maliwal, B. P. Anal. Chem. 1998, 70, 1749-1754.
(57) Thompson, R. B.; Whetsell, W. O.; Maliwal, B. P.; Fierke, C. A.;
Frederickson, C. J. J. Neurosci. Methods 2000, 96, 35-45.
(58) Thompson, R. B.; Cramer, M. L.; Bozym, R. J. Biomed. Opt. 2002, 7,
555-560.
(45) Gee, K. R.; Zhou, Z.-L.; Qian, W.-J.; Kennedy, R. J. Am. Chem. Soc. 2002,
124, 776-778.
(46) Gee, K. R.; Zhou, Z.-L.; Ton-That, D.; Sensi, S. L.; Weiss, J. H. Cell
Calcium 2002, 31, 245-251.
(47) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J.
J. Am. Chem. Soc. 2001, 123, 7831-7841.
(59) Bozym, R. A.; Thompson, R. B.; Stoddard, A. K.; Fierke, C. A. ACS Chem.
Biol. 2006, 1, 103-111.
(48) Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J. J. Am. Chem.
Soc. 2003, 125, 1778-1787.
(60) Godwin, H. A.; Berg, J. M. J. Am. Chem. Soc. 1996, 118, 6514-6515.
(61) Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1996, 118, 3053-3054.
(62) Shults, M. D.; Pearce, D. A.; Imperiali, B. J. Am. Chem. Soc. 2003, 125,
10591-10597.
(49) Chang, C. J.; Nolan, E. M.; Jaworski, J.; Burdette, S. C.; Sheng, M.; Lippard,
S. J. Chem. Biol. 2004, 11, 203-210.
(50) Nolan, E. M.; Jaworski, J.; Okamoto, K.-I.; Hayashi, Y.; Sheng, M.; Lippard,
S. J. J. Am. Chem. Soc. 2005, 127, 16812-16823.
(63) Goldsmith, C. R.; Lippard, S. J. Inorg. Chem. 2006, 45, 555-561.
(64) Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310-8317.
9
15518 J. AM. CHEM. SOC. VOL. 128, NO. 48, 2006