a challenge to find a suitable chiral auxiliary which would
combine complete diastereoselectivity and good reactivity with
hindered halogenated compounds such as isobutyl and isopropyl
iodides. We recently reported the highly diastereoselective
alkylation of amides enolates using a trifluoromethylated
oxazolidine (Fox) as the chiral auxiliary.5 In the present paper,
we report now a new facet of the use of the Fox chiral auxiliary
for a straightforward synthetic route to various enantiopure ꢀ2-
amino acids and γ-amino alcohols through diastereoselective
alkylation of a unique chiral homoglycine precursor.
Highly Diastereoselective Synthetic Route to
Enantiopure ꢀ2-Amino Acids and γ-Amino
Alcohols Using a Fluorinated Oxazolidine (Fox)
as Chiral Auxiliary
Arnaud Tessier, Nour Lahmar, Julien Pytkowicz, and
Thierry Brigaud*
Laboratoire “Synthe`se Organique Se´lectiVe et Chimie
Organome´tallique” (SOSCO), UMR CNRS 8123,
UniVersite´ de Cergy-Pontoise, 5,
The starting N-ꢀ-aminopropanoyloxazolidine 3a was conve-
niently prepared from (R)-phenylglycinol and fluoral based
oxazolidines 1a,b6 in a two-step procedure. The one-pot
N-acylation/dehydrochlorination reaction of the 1a,b diastere-
omeric mixture with 3-chloropropanoylchloride in triethylamine
gave the corresponding trans- and cis-N-propenoyloxazolidines
2a and 2b in very good isolated yield after an easy silica gel
Mail Gay Lussac NeuVille sur Oise 95031,
Cergy-Pontoise Cedex, France
ReceiVed March 12, 2008
(3) (a) Beddow, J. E.; Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell,
A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 2812–2825.
(b) Beddow, J. E.; Davies, S. G.; Smith, A. D.; Russell, A. J. Chem. Commun.
2004, 2778–2779. (c) Moumne, R.; Denise, B.; Guitot, K.; Rudler, H.; Lavielle,
S.; Karoyan, P. Eur. J. Org. Chem. 2007, 1912–1920. (d) Moumne, R.; Lavielle,
S.; Karoyan, P. J. Org. Chem. 2006, 71, 3332–3334. (e) Ponsinet, R.; Chassaing,
G.; Vaissermann, J.; Lavielle, S. Eur. J. Org. Chem. 2000, 83–90. (f) Seebach,
D.; Schaeffer, L.; Gessier, F.; Bindschaedler, P.; Jaeger, C.; Josien, D.; Kopp,
S.; Lelais, G.; Mahajan, Y. R.; Micuch, P.; Sebesta, R.; Schweizer, B. W HelV.
Chim. Acta 2003, 86, 1852–1861. (g) Lelais, G.; Campo, M. A.; Kopp, S.;
Seebach, D. HelV. Chim. Acta 2004, 87, 1545–1560. (h) Sebesta, R.; Seebach,
D. HelV. Chim. Acta 2003, 86, 4061–4072. (i) Guichard, G.; Abele, S.; Seebach,
D. HelV. Chim. Acta 1998, 81, 187–206. (j) Nagula, G.; Huber, V. J.; Lum, C.;
Goodman, B. A. Org. Lett. 2000, 2, 3527–3529. (k) Juaristi, E.; Quintana, D.;
Lamatsch, B.; Seebach, D. J. Org. Chem. 1991, 56, 2553–2557. (l) Juaristi, E.;
Quintana, D.; Balderas, M.; Garcia-Perez, E. Tetrahedron: Asymmetry 1996, 7,
2233–2246. (m) Gutie´rrez-Garc´ıa, V. M.; Lo´pez-Ruiz, H.; Reyes-Rangel, G.;
Juaristi, E. Tetrahedron 2001, 57, 6487–6496. (n) Juaristi, E.; Balderas, M.;
Lo´pez-Ruiz, H.; Jime´nez-Pe´rez, V. M.; Kaiser-Carril, M. L.; Ram´ırez-Quiro´s,
Y. Tetrahedron: Asymmetry 1999, 10, 3493–3505. (o) Lee, H.-S.; Park, J.-S.;
Kim, B. M.; Gellman, S. J. Org. Chem. 2003, 68, 1575–1578. (p) Evans, D. A.;
Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990,
112, 8215–8216. (q) Kubo, A.; Kubota, H.; Takahashi, M.; Nunami, K. I. J.
Org. Chem. 1997, 62, 5830–5837. (r) Eilitz, U.; Lessmann, F.; Seidelmann, O.;
Wendisch, V. Tetrahedron: Asymmetry 2003, 14, 189–191. (s) Eilitz, U.;
Lessmann, F.; Seidelmann, O.; Wendisch, V. Tetrahedron: Asymmetry 2003,
14, 3095–3097. (t) Sibi, M. P.; Patil, K. Tetrahedron: Asymmetry 2006, 17, 516–
519. (u) Stoncius, A.; Nahrwold, M.; Sewald, N. Synthesis 2005, 1829–1837.
(v) Barnish, I. T.; Corless, M.; Dunn, P. J.; Ellis, D.; Finn, P. W.; Hardstone,
J. D.; James, K. Tetrahedron Lett. 1993, 34, 1323–1326.
The alkylation reactions of an amide enolate derived from a
trifluoromethylated oxazolidine (Fox) chiral auxiliary occur
with a complete diastereoselectivity and in good yields with
various electrophiles. This reaction provides a versatile and
straightforward strategy for the synthesis of ꢀ2-amino acids
and γ-amino alcohols in enantiopure form.
ꢀ2-Amino acids are finding an increasing interest because of
their biological properties.1 Moreover, their incorporation into
a peptide chain gives rise to the formation of well-defined
ꢀ-peptide secondary structures2 associated with specific biologi-
cal activities. For these reasons, several chiral auxiliary-based3
or catalytic asymmetric methods4 have recently been reported
for their preparation. From all of these strategies, it appears that
the stereoselective alkylation of a homoglycine-type precursor
would be one of the more versatile methods for the synthesis
of enantiomerically pure compounds, provided that the control
of the stereoselectivity is total to avoid tedious separations and
that the reaction is general. However, until now there has been
(4) (a) Chi, Y.; English, E. P.; Pomerantz, W. C.; Horne, W. S.; Joyce, L. A.;
Alexander, L. R.; Fleming, W. S.; Hopkins, E. A.; Gellman, S. H. J. Am. Chem.
Soc. 2007, 129, 6050–6055. (b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006,
128, 6804–6805. (c) Sibi, M. P.; Tatamidani, H.; Patil, K. Org. Lett. 2005, 7,
2571–2573. (d) Sibi, M. P.; Patil, K. Angew. Chem., Int. Ed. 2004, 43, 1235–
1238. (e) Sibi, M.; P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am.
Chem. Soc. 2003, 125, 11796–11797. (f) Sammis, G. M.; Jacobsen, E. N. J. Am.
Chem. Soc. 2003, 125, 4442–4443. (g) Sewald, N. Angew. Chem., Int. Ed. 2003,
42, 5794–5795. (h) Davies, H. M. L.; Venkataramani, C. Angew. Chem., Int.
Ed. 2002, 41, 2197–2199. (i) Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am.
Chem. Soc. 2003, 125, 3700–3701. (j) Hoen, R.; Tiemersma-Wegman, T.;
Procuranti, B.; Lefort, L.; De Vries, J. G.; Minnaard, A. J.; Feringa, B. L. Org.
Biomol. Chem. 2007, 2, 267–275. (k) Swiderska, M. A.; Stewart, J. D. Org.
Lett. 2006, 8, 6131–6133. (l) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z.
Org. Lett. 2006, 8, 3359–3362. (m) Saylik, D.; Campi, E. M.; Donohue, A. C.;
Jackson, W. R.; Robinson, A. J. Tetrahedron: Asymmetry 2001, 12, 657–667.
(n) Rimkus, A.; Sewald, N. Org. Lett. 2003, 5, 79–80. (o) Elaridi, J.; Thaqi, A.;
Prosser, A.; Jackson, W. R.; Robinson, A. J. Tetrahedron: Asymmetry 2005, 16,
1309–1319.
(1) (a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991–8035. (b) Aguilar,
M.-I.; Purcell, A.; Devi, R.; Lew, R.; Rossjohn, J.; Smith, A. I.; Perlmutter, P.
Org. Biomol. Chem. 2007, 5, 2884–2890. (c) Pratt, L. M.; Beckett, R. P.; Davies,
S. J.; Launchbury, S. B.; Miller, A.; Spavold, Z. M.; Todd, R. S.; Whittaker, M.
Bioorg. Med. Chem. Lett. 2001, 11, 2585–2588.
(2) (a) Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. BiodiVersity 2004,
1, 1111–1239. (b) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV.
2001, 101, 3219–3232. (c) Norgren, A. S; Buttner, F.; Prabpai, S.; Kongsaeree,
P.; Arvidsson, P J. Org. Chem. 2006, 71, 6814–6821.
(5) (a) Tessier, A.; Pytkowicz, J.; Brigaud, T. Angew. Chem. 2006, 118, 3759–
3763. (b) Angew. Chem., Int. Ed. 2006, 45, 3677-3681.
(6) Oxazolidines 1a,b were prepared according to the procedure reported by
Mikami et al.: Ishii, A.; Higashiyama, K.; Mikami, K. Synlett 1997, 1381–1382.
3970 J. Org. Chem. 2008, 73, 3970–3973
10.1021/jo800562x CCC: $40.75 2008 American Chemical Society
Published on Web 04/18/2008