A R T I C L E S
Lettan et al.
Scheme 3. Homoenolate Addition to Imines
Table 5. Synthesis of γ-Hydroxy Amidesa
Another variant of this new strategy involved the addition of
an imine as the electrophilic component (Scheme 3, eq 22).
Addition of homoenolate 47 to imine 99 would permit access
to highly substituted γ-amino-ꢀ-hydroxy amides (100). More
importantly, cyclization of the amide to the corresponding
γ-lactam (101) was envisioned to be accomplished directly upon
removal of the activating group on the imine nitrogen. The
synthesis of γ-lactams73-77 is an important goal due to their
application in the drug-discovery process, as key intermediates
in the preparation of biologically and pharmaceutically relevant
molecules.78 Compounds containing these heterocycles have
direct applications in the treatment of cancer,78-80 fungal
infections,80 epilepsy,81,82 HIV,83,84 neurodegenerative dis-
eases,85 and depression.86
To evaluate the homoenolate addition to imines, we surveyed
compounds with a variety of different activating groups on
nitrogen (Table 5, eq 23). Following homoenolate formation,
a Acylsilane and electrophile added to a 0.1 M enolate solution in
THF at -78 °C. Silyl ether products treated with n-Bu4NF in THF prior
to purification. b Determined by 1H NMR spectroscopy. c Reaction
warmed slowly to 23 °C following addition of the imine. d Reaction
maintained at s78 °C following addition of the imine.
(63) Reactions were conducted both by forming the enolate/homoenolate
in the presence of (-)-sparteine and by introducing sparteine after
homoenolate formation. Various reaction temperatures (-78 to 23
°C) and solvents (toluene, diisopropylether, tert-butylmethyl ether)
were surveyed.
addition of N-benzyl imine 10287 gave the desired γ-amino
amide (105) in modest yield (entry 1). The major side product
of this reaction is the secondary alcohol (60) resulting from
incomplete addition of the intermediate homoenolate to the
imine after a 24 h reaction period. To increase the reactivity of
the imine, N-sulfonylimine 103 was synthesized.88 Exposure
of imine 103 to the established reaction conditions led to the
formation of desired amide (106) in good yield and diastereo-
selectivity (entry 2). In an attempt to further improve these
results, while simultaneously choosing a less robust N-protecting
group, we synthesized N-diphenylphosphinyl imine 104.89
Addition of the homoenolate to imine 104, followed by warming
to ambient temperature, led to an undesired rearrangement
product (not shown, entry 3). Maintaining the reaction temper-
ature at -78 °C following imine addition negated this side
reaction and gave exclusively the desired γ-amino-ꢀ-hydroxy
amide (107) in good yield and with high diastereoselectivity
(>20:1) after desilylation (entry 4).
(64) As determined by chiral HPLC analysis.
(65) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77–82.
(66) Davies, S. G.; Sanganee, H. J.; Szolcsanyi, P. Tetrahedron 1999,
55, 3337–3354.
(67) Bishop, J. E. M., C. A.; Gerdes, J. M.; Whitney, J. M.; Eaton, A. M.;
Mailman, R. B. J. Med. Chem. 1991, 34, 1612–1624.
(68) Myers, A. G. Y., B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.;
Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496–6511.
(69) Kanemasa, S.; Onimura, K. Tetrahedron 1992, 48, 8631–8644.
(70) Kanemasa, S.; Onimura, K. Tetrahedron 1992, 48, 8645–8658.
(71) The absolute stereochemistry of ꢀ-hydroxy amide 92, was determined
by single-crystal X-ray diffraction (see Supporting Information). The
absolute stereochemistry of additional ꢀ-hydroxy amides were
assigned by analogy.
(72) Beak, P.; Anderson, D. R.; Curtis, M. D.; Laumer, J. M.; Pippel,
D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33, 715–727.
(73) Sun, P. P.; Chang, M. Y.; Chiang, M. Y.; Chang, N. C. Org. Lett.
2003, 5, 1761–1763.
(74) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131–3134.
(75) Romero, A.; Woerpel, K. A. Org. Lett. 2006, 8, 2127–2130.
(76) Dong, C. Q.; Deng, G. S.; Wang, J. B. J. Org. Chem. 2006, 71,
5560–5564.
(77) McLaughlin, M.; Takahashi, M.; Micalizio, G. C. Angew. Chem.,
Int. Ed. 2007, 46, 3912–3914.
For our purposes, the N-diphenylphosphinyl functionality
proved to be an optimal choice as an amino protecting group
because of (a) its electron withdrawing properties,90 (b) the steric
magnitude associated with this functionality and its apparent
stereochemical influence, and (c) the ease of removal of this
group under acidic conditions,91 increasing the potential of
concomitant intramolecular cyclization to the γ-lactam. N-
(78) Das Sarma, K.; Zhang, J.; Huang, Y.; Davidson, J. G. Eur. J. Org.
Chem. 2006, 3730–3737.
(79) Fenteany, G.; Standaert, R. F.; Reichard, G. A.; Corey, E. J.;
Schreiber, S. L. Proc. Nat. Acad. Sci. U.S.A. 1994, 91, 3358–3362.
(80) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.;
Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355–
360.
(81) Reddy, P. A.; Hsiang, B. C. H.; Latifi, T. N.; Hill, M. W.; Woodward,
K. E.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem.
1996, 39, 1898–1906.
(82) Shorvon, S. Lancet 2001, 358, 1885–1892.
(87) Moonen, K. S., C. V. Synthesis 2005, 20, 3603–3612.
(88) Love, B. E. R., P. S.; Williams, T. C. Synlett 1994, 493–494.
(89) Boyd, D. R.; Malone, J. F.; Mcguckin, M. R.; Jennings, W. B.;
Rutherford, M.; Saket, B. M. J. Chem. Soc., Perkin Trans. 2 1988,
1145–1150.
(83) Spaltenstein, A.; Almond, M. R.; Bock, W. J.; Cleary, D. G.; Furfine,
E. S.; Hazen, R. J.; Kazmierski, W. M.; Salituro, F. G.; Tung, R. D.;
Wright, L. L. Bioorg. Med. Chem. Lett. 2000, 10, 1159–1162.
(84) Kazmierski, W. M.; Andrews, W.; Furfine, E.; Spaltenstein, A.;
Wright, L. Bioorg. Med. Chem. Lett. 2004, 14, 5689–5692.
(85) Tang, K.; Zhang, J. T. Neurol. Res. 2002, 24, 473–478.
(86) Rose, G. M.; Hopper, A.; De Vivo, M.; Tehim, A. Curr. Pharm.
Des. 2005, 11, 3329–3334.
(90) Obrien, P. M.; Sliskovic, D. R.; Blankley, C. J.; Roth, B. D.; Wilson,
M. W.; Hamelehle, K. L.; Krause, B. R.; Stanfield, R. L. J. Med.
Chem. 1994, 37, 1810–1822.
(91) Mattson, A. E.; Scheidt, K. A. Org. Lett. 2004, 6, 4363–4366.
9
8810 J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009