LETTER
Zwitterionic-Type Molten Salt
1167
+
O–
H
N
N
N
H
S
R4
R5
H
O
R3
R1
R4
O
H
O
N
R2
R4
R5
R2
+
+
+
HN
R1
N
R5
_ H2O
R3
N
R3
H
Scheme 2
J. Org. Chem. 2001, 66, 4865. (c) Zhang, H. C.; Bonaga,
L. V. R.; Ye, H.; Derian, C. K.; Damiano, B. P.; Maryanoff,
B. E. Bioorg. Med. Chem. Lett. 2007, 17, 2863.
(d) Bandini, M.; Eichholzer, A. Angew. Chem. Int. Ed. 2009,
48, 9608. (e) Humphrey, G. R.; Kuethe, J. T. Chem. Rev.
2006, 106, 2875.
bond formation with the C-2 hydrogen atom of the imida-
zolium moiety.10 In the next step, the indole reacts with
iminium ion intermediate to produce the 3-aminoalkylat-
ed indole. In this step, the catalyst might play a role by ac-
tivating the indole nucleus through the interaction of
sulfone functionality of the zwitterion with the NH hydro-
gen of the indole.
(4) (a) Moore, R. E.; Cheuk, C.; Patterson, C. G. M. L. J. Am.
Chem. Soc. 1984, 106, 6456. (b) Fridkin, G.; Boutard, N.;
Lubell, W. D. J. Org. Chem. 2009, 74, 5603.
The recovery and reusability of the catalyst were also in-
vestigated. After completion, the reaction mixture was ex-
tracted with diethyl ether (3 × 10 mL) and the catalyst, left
in the vessel was dried under vacuum for subsequent reac-
tions. The catalyst was reused for six times without no-
ticeable decrease in catalytic activity (79% for entry 1,
Table 1).
(5) Wynne, J. H.; Stalick, W. M. J. Org. Chem. 2002, 67, 5850.
(6) (a) Olyaei, A.; Shams, B.; Sadeghpour, M.; Gesmati, F.;
Razazaine, Z. Tetrahedron Lett. 2010, 51, 6086. (b) Yadav,
D. K.; Patel, R.; Srivastava, V. P.; Watel, G.; Yadav, L. D.
S. Tetrahedron Lett. 2010, 51, 5701. (c) Srihari, P.; Sing, V.
K.; Bhunia, D. C.; Yadav, J. S. Tetrahedron Lett. 2009, 50,
3763. (d) Das, B.; Kumar, J. N.; Kumar, A. S.; Damodar, K.
Synthesis 2010, 914. (e) Sharifi, A.; Mirzaei, M.; Naimi-
Jamal, M. R. Monatsh. Chem. 2001, 132, 875. (f) Dai,
H.-G.; Li, J.-T.; Li, T. S. Synth. Commun. 2006, 36, 1829.
(g) Zao, J.-L.; Liu, L.; Zhang, H.-B.; Wu, Y.-C.; Wang, D.;
Chen, Y.-F. Synlett 2006, 96. (h) Bello, J. S.; Amado, D. F.;
Kouznetsov, V. V. Rev. Soc. Quim. Peru 2008, 74, 190.
(i) Gruback, H.-J.; Arend, M.; Risch, N. Synthesis 1996,
883. (j) Saidi, M. R.; Azizi, N.; Naimi-Jamal, M. R.
Tetrahedron Lett. 2001, 42, 8111.
In conclusion, we have demonstrated a mild, simple, and
environmentally friendly one-pot synthesis of 3-ami-
noalkylated indole derivatives via a three-component cou-
pling of indole, aldehyde, and amine catalyzed by
zwitterionic-type molten salt under solvent-free condi-
tions. The present method is equally effective for aliphat-
ic, aromatic, and heteroaromatic aldehydes. The non-
hazardous experimental procedure, mild reaction condi-
tions and reusability of the catalyst are the notable advan-
tages of this procedure. Further procedures to broaden the
scope of this methodology towards the synthesis of bio-
logically important compounds are under investigation.
(7) (a) Das, S.; Rahman, M.; Kundu, D.; Majee, A.; Hajra, A.
Can. J. Chem. 2010, 88, 150. (b) Ranu, B. C.; Dey, S. S.;
Hajra, A. Tetrahedron 2003, 59, 2417.
(8) (a) Kundu, D.; Debnath, R. K.; Majee, A.; Hajra, A.
Tetrahedron Lett. 2009, 50, 6998. (b) Kundu, D.;Majee, A.;
Hajra, A. Catal. Commun. 2010, 11, 1157.
(9) Synthesis of 2-Methyl-3-(morpholin-4-ylpyridin-2-
ylmethyl)-1H-indole (Entry 16, Table 1): A mixture of 2-
pyridinecarboxaldehyde (190 mL, 214 mg, 2 mmol),
morpholine (350 mL, 348 mg, 4 mmol), and 2-methylindole
(262 mg, 2 mmol) was stirred in the presence of 4-(1-
imidazolium)butane sulfonate (82 mg, 20 mol%) at 60 °C for
2 h. After completion of the reaction (TLC) the reaction
mixture was extracted with Et2O (3 × 10 mL). Evaporation
of solvent furnished the crude product which was subjected
to column chromatography to obtain the pure product (498
mg, 81%) as a brown solid; mp 145–146 °C. IR (KBr): 3502,
2738, 1587, 1460, 1377 cm–1. 1H NMR (500 MHz, CDCl3):
d = 8.44 (d, J = 3.0 Hz, 1 H), 8.19 (s, 1 H), 8.07 (t, J = 3.0
Hz, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 7.55 (t, J = 8.5 Hz, 1 H),
7.15–7.17 (m, 1 H), 7.02–7.10 (m, 3 H), 4.76 (s, 1 H), 3.72–
3.79 (m, 4 H), 2.58 (m, 2 H), 2.44 (s, 3 H), 2.37–2.41 (m, 2
H). 13C NMR (125 MHz, CDCl3): d = 162.6, 148.6, 136.8,
135.4, 133.4, 127.0, 122.1, 121.8, 121.0, 120.2, 119.6,
110.6, 110.4, 71.1, 67.4 (2 × C), 67.4 (2 × C), 12.5. Anal.
Calcd for C19H21N3O: C, 74.24; H, 6.89; N, 13.67. Found: C,
74.10; H, 6.72; N, 13.58. The catalyst, left in the reaction
vessel, was dried under vacuum and was reused for
subsequent reactions.
Acknowledgment
This work is supported by the Department of Science and Techno-
logy, Govt. of India (Grant No. SR/S5/GC-05/2010). D.K. and
A.K.B. thank the Council of Scientific and Industrial Research
(CSIR) for their fellowship. A.M. acknowledges financial support
from the CSIR [Grant No. 01(2251)/08/EMR-II].
References and Notes
(1) (a) Multicomponent Reactions; Zhu, J.; Bienaymé, H., Eds.;
Wiley-VCH: Weinheim, 2005. (b) Tanaka, K.; Toda, F.
Chem. Rev. 2000, 100, 1025. (c) Hobbs, H. R.; Thomas,
N. R. Chem. Rev. 2007, 107, 2786. (d) Dömling, A. Chem.
Rev. 2006, 106, 17. (e) Dömling, A.; Ugi, I. Angew. Chem.
Int. Ed. 2000, 39, 3168. (f) Mizuno, N.; Misono, M. Chem.
Rev. 1998, 98, 199.
(2) (a) Sundberg, R. J. In The Chemistry of Indoles; Academic
Press: New York, 1996. (b) Bao, B.; Sun, Q.; Yao, X.;
Hong, J.; Lee, C. O.; Sim, C. J.; Im, K. S.; Jung, J. H. J. Nat.
Prod. 2005, 68, 711. (c) Casapullo, A.; Bifulco, G.; Bruno,
I.; Riccio, R. J. Nat. Prod. 2000, 63, 447. (d) Garbe, T. R.;
Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.;
Yukawa, H. J. Nat. Prod. 2000, 63, 596.
(10) (a) Chakraborti, A. K.; Roy, S. R.; Kumar, D.; Chopra, P.
Green Chem. 2008, 10, 1111. (b) Chakraborti, A. K.; Roy,
S. R. J. Am. Chem. Soc. 2009, 131, 6902.
(3) (a) Sundberg, R. J. In The Chemistry of Indoles; Academic
Press: New York, 1970. (b) Jiang, B.; Yang, C. G.; Wang, J.
Synlett 2011, No. 8, 1165–1167 © Thieme Stuttgart · New York