Three-Component Cascade Energy Transfer with
Use of Oligonaphthalene Skeletons
Kazunori Tsubaki,* Kazuto Takaishi, Daisuke Sue,
Kazunari Matsuda, Yoshihiko Kanemitsu, and
Takeo Kawabata
Institute for Chemical Research, Kyoto UniVersity, Gokasho,
Uji, Kyoto, 611-0011, Japan
ReceiVed March 20, 2008
Three oligonaphthalenes with zinc porphyrin and free-base
porphyrin moieties were synthesized, in which cascade
energy transfer (from naphthalene to free-base porphyrin via
zinc porphyrin) was observed when the zinc and free-base
porphyrins were close to each other.
In the field of supramolecular chemistry, considerable research
has focused on developing molecular devices and molecular
machines such as molecular motors, ratchets, and logic gates.1
At the same time, photosensitive functional molecules have been
considered as input/output devices for information and as energy
and/or electron transfer devices related to photosynthesis.2
Several fully conjugated systems containing porphyrins have
been applied and reported for the purpose.3 On the other hand,
FIGURE 1. Oligonaphthalenes 1a-4f and porphyrins 5 and 6.
we have focused our attention on the synthesis and function of
oligonaphthalenes composed of a 2,3-dioxynaphthalene unit
connected at the 1,4-position.4 Herein, we report a three-
component hierarchical energy transfer system5 based on
oligonaphthalenes with zinc porphyrins and/or free-base por-
phyrins 1a-c ≈ 4a-c (Figure 1).
(1) Recent reviews for molecular machines: (a) Kay, E. R.; Leigh, D. A.;
Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72–191. (b) Balzani, V.; Credi,
A.; Silvi, S.; Venturi, M. Chem. Soc. ReV. 2006, 35, 1135–1149. (c) Kinbara,
K.; Aida, T. Chem. ReV. 2005, 105, 1377–1400. (d) Kelly, T. R. Acc. Chem.
Res. 2001, 34, 514–522.
Scheme 1 outlines the synthetic route of oligonaphthalenes.6
Oligonaphthalenes with two hydroxy groups 1e-4e4c were
treated with 4-(10,15,20-triphenyl-21H,23H-porphin-5-yl)ben-
zoic acid (TPP(H2)CO2H) (5) in the presence of 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (WSC) ·HCl and 4-dimeth-
(2) (a) Saha, S.; Stoddart, J. F. Chem. Soc. ReV. 2007, 36, 77–92. (b) Satake,
A.; Kobuke, Y. Org. Biomol. Chem. 2007, 5, 1679–1691.
(3) (a) Krebs, F. C.; Hagemann, O.; Spanggaard, H. J. Org. Chem. 2003,
68, 2463–2466. (b) Krebs, F. C.; Spanggaard, H.; Rozlosnik, N.; Larsen, N. B.;
Jørgensen, M. Langmuir 2003, 19, 7873–7880. (c) Hagemann, O.; Jørgensen,
M.; Krebs, F. C. J. Org. Chem. 2006, 71, 5546–5559.
(4) (a) Tsubaki, K. Org. Biomol. Chem. 2007, 5, 2179–2188. (b) Tsubaki,
K.; Takaishi, K.; Sue, D.; Kawabata, T. J. Org. Chem. 2007, 72, 4238–4241.
(c) Tsubaki, K.; Tanaka, H.; Takaishi, K.; Miura, M.; Morikawa, H.; Furuta, T.;
Tanaka, K.; Fuji, K.; Sasamori, T.; Tokitoh, N.; Kawabata, T. J. Org. Chem.
2006, 71, 6579–6587. (d) Tsubaki, K.; Takaishi, K.; Tanaka, H.; Miura, M.;
Kawabata, T. Org. Lett. 2006, 8, 2587–2590. (e) Takaishi, K.; Tsubaki, K.;
Tanaka, H.; Miura, M.; Kawabata, T. YAKUGAKU ZASSHI 2006, 126, 779–
787. (f) Tsubaki, K.; Miura, M.; Nakamura, A.; Kawabata, T. Tetrahedron Lett.
2006, 47, 1241–1244. (g) Tsubaki, K.; Miura, M.; Morikawa, H.; Tanaka, H.;
Kawabata, T.; Furuta, T.; Tanaka, K.; Fuji, K. J. Am. Chem. Soc. 2003, 125,
16200–16201.
(5) For multicomponent energy transfer system: (a) Faiz, J. A.; Williams,
R. M.; Pereira Silva, M. J. J.; De Cola, L.; Pikramenou, Z. J. Am. Chem. Soc.
2006, 128, 4520–4521. (b) Cotlet, M.; Vosch, T.; Habuchi, S.; Weil, T.; Mu¨llen,
K.; Hofkens, J.; De Schryver, F. J. Am. Chem. Soc. 2005, 127, 9760–9768. (c)
Pan, Y.; Lu, M.; Peng, Z.; Melinger, J. S. J. Org. Chem. 2003, 68, 6952–6958.
(d) Weil, T.; Reuther, E.; Mu¨llen, K. Angew. Chem., Int. Ed. 2002, 41, 1900–
1904. (e) Serin, J. M.; Brousmiche, D. W.; Fre´chet, J. M. J. Chem. Commun.
2002, 2605–2607. (f) Hahn, U.; Gorka, M.; Vo¨gtle, F.; Vicinelli, V.; Ceroni, P.;
Maestri, M.; Balzani, V. Angew. Chem., Int. Ed. 2002, 41, 3595–3598.
(6) Full experimental details: see the Supporting Information.
10.1021/jo800642u CCC: $40.75
Published on Web 05/08/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4279–4282 4279