Quantitative Monitoring of Solid-Phase Aldehydes
phase chemist because (i) not all intermediates are stable
to cleavage conditions, (ii) low-load resins may not
provide enough product for isolation and characterization,
(iii) sophisticated equipment might be needed, and (iv)
the process may entail an unacceptable time delay in
developing the information needed to make informed
decisions on how to proceed with the synthesis. Fortu-
nately, a variety of rapid on- and off-bead analytical
techniques are available for monitoring some solid-phase
functional groups.5,9,19-22
phase aldehyde transformations involving redox chem-
istry, condensations, and C-C bond formation, among
others (see various reviews6-12,49-55), companion methods
to monitor these common conversions are needed. We
recently reported on a qualitative colorimetric test to
monitor solid-phase aldehydes using 2,4-dinitrophenyl-
hydrazine (DNPH),45,56 to go with literature methods that
use p-anisaldehyde43 or 4-amino-3-hydrazino-5-mercapto-
1,2,4-triazole (Purpald).44 Nevertheless, a simple and
robust quantitative protocol for resin-bound aldehydes
was still required.
Quantitative measurements of resin-bound functional
groups can be valuable when calculating loadings, opti-
mizing reactions, and establishing yields (extent of
conversion) of solid-phase transformations. To the best
of our knowledge, the only previously described method
to quantitate solid-phase aldehydes uses fluorescence
spectroscopy to measure the uptake of dansyl hydrazine
from a supernatant solution by resin-bound aldehydes.42
While this method is reported to be quite sensitive, it is
also tedious and only serves indirectly for quantification.
In search of a simpler and more direct route to quantify
solid-phase aldehydes, we were interested in designing
a stable chromophore-based “reagent” (1, Scheme 1) that
would react quantitatively with the aldehyde to provide
an immobilized intermediate (2). Subsequent mild and
selective release of chromophore 3, followed by its sensi-
tive measurement by ultraviolet-visible (UV-vis) spec-
troscopy, would provide an accurate result that could be
related directly to the absolute amount of aldehyde.
Literature protocols for quantifying amines,57-65
thiols,66,67 and alcohols68,69 during solid-phase peptide/
organic synthesis follow this straightforward model.
The present article describes the synthesis of a new
chromophoric hydrazine-based reagent, 4-(9-fluorenyl-
We are currently interested in the qualitative/quanti-
tative monitoring of solid-phase aldehydes using on-bead
chemical derivatization methods.42-45 Given the practical
importance of on-resin reductive amination46-48 in back-
bone amide linker (BAL) anchoring,49,50 and other solid-
(18) Merritt, A. T.; Gerritz, S. W. Curr. Opin. Chem. Bio. 2003, 7,
305-307.
(19) Kay, C.; Lorthioir, O. E.; Parr, N. J .; Congreve, M.; McKeown,
S. C.; Scicinski, J . J .; Ley, S. V. Biotech. Bioeng. 2001, 71, 110-118.
(20) Perez, J . M. High-Throughput Synth. 2001, 27-39.
(21) Irving, M.; Cournoyer, J .; Li, R.; Santos, C.; Yan, B. Comb.
Chem. High Throughput Screening 2001, 4, 353-362.
(22) Scicinski, J . J .; Congreve, M. S.; Kay, C.; Ley, S. V. Curr. Med.
Chem. 2002, 9, 2103-2127.
(23) Rosse, G.; Ouertani, F.; Schroeder, H. J . Comb. Chem. 1999, 1,
397-401.
(24) Shapiro, M. J .; Gounarides, J . S. Biotech. Bioeng. 2001, 71, 130-
148.
(25) Lippens, G.; Warrass, R.; Wieruszeski, J . M.; Rousselot-Pailley,
P.; Chessari, G. Comb. Chem. High Throughput Screening 2001, 4,
333-351.
(26) Shapiro, M. J . In Encyclopedia of Nuclear Magnetic Resonance;
Wiley: Chichester, UK, 2002; Vol. 9, pp 514-519.
(27) J amieson, C.; Congreve, M. S.; Hewitt, P. R.; Scicinski, J . J .;
Ley, S. V. J . Comb. Chem. 2001, 3, 397-399.
(28) Salvino, J . M.; Patel, S.; Drew, M.; Krowlikowski, P.; Orton,
E.; Kumar, N. V.; Caulfield, T.; Labaudiniere, R. J . Comb. Chem. 2001,
3, 177-180.
(29) Fernandez-Forner, D.; Huerta, J . M.; Ferrer, M.; Casals, G.;
Ryder, H.; Giralt, E.; Albericio, F. Tetrahedron Lett. 2002, 43, 3543-
3546.
(30) Le Roy, I.; Mouysset, D.; Mignani, S.; Vuilhorgne, M.; Stella,
L. Tetrahedron 2003, 59, 3719-3727.
(51) Gallop, M. A.; Barrett, R. W.; Dower, W. J .; Fodor, S. P.; Gordon,
E. M. J . Med. Chem. 1994, 37, 1233-1251.
(31) Schroeder, H. Comb. Chem. High Throughput Screening 2003,
6, 741-753.
(52) Gordon, E. M.; Barrett, R. W.; Dower, W. J .; Fodor, S. P.; Gallop,
M. A. J . Med. Chem. 1994, 37, 1385-1401.
(32) Gremlich, H.-U. Biotech. Bioeng. 1999, 61, 179-187.
(33) Yan, B.; Gremlich, H.-U.; Moss, S.; Coppola, G. M.; Sun, Q.;
Liu, L. J . Comb. Chem. 1999, 1, 46-54.
(53) Ellman, J . A. Acc. Chem. Res. 1996, 29, 132-143.
(54) Hermkens, P. H. H.; Ottenheijm, H. C. J .; Rees, D. C. Tetra-
hedron 1997, 53, 5643-5678.
(34) Huber, W.; Bubendorf, A.; Grieder, A.; Obrecht, D. Anal. Chim.
Acta 1999, 393, 213-221.
(55) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J .; Rees, D.
C. Tetrahedron 1998, 54, 15385-15443.
(35) de Miguel, Y. R.; Shearer, A. S. Biotech. Bioeng. 2001, 71, 119-
129.
(56) Shannon, S. K.; Peacock, M. J .; Kates, S. A.; Barany, G. J . Comb
Chem. 2003, 5, 860-868.
(36) Mihaichuk, J .; Tompkins, C.; Pieken, W. Anal. Chem. 2002, 74,
1355-1359.
(57) Krchnak, V.; Va´gner, J .; Lebl, M. Int. J . Pept. Protein Res. 1988,
32, 415-416.
(37) Schmid, D. G.; Grosche, P.; Bandel, H.; J ung, G. Biotech. Bioeng.
2001, 71, 149-161.
(58) Krchnak, V.; Va´gner, J .; Safar, P.; Lebl, M. Collect. Czech.
Chem. Commun. 1988, 53, 2542-2548.
(38) Rousselot-Pailley, P.; Ede, N. J .; Lippens, G. J . Comb. Chem.
2001, 3, 559-563.
(59) Atherton, E.; Sheppard, R. C. Solid-Phase Peptide Synthesis:
A Practical Approach; IRL Press: Oxford, UK, 1989.
(60) Fukuyama, T.; J ow, C.-K.; Cheung, M. Tetrahedron Lett. 1995,
36, 6373-6374.
(39) Hutton, R. S.; Adams, J . P.; Trivedi, H. S. Analyst 2003, 128,
103-108.
(40) Barany, G.; Merrifield, R. B. In The Peptides; Gross, E.,
Meienhofer, J ., Eds.; Academic: New York, 1979; Vol. 2, pp 1-284.
(41) Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100, 2091-
2157.
(61) Chu, S. S.; Reich, S. H. Bio. Med. Chem. Lett. 1995, 5, 1053-
1058.
(62) Carpino, L. A.; Ismail, M.; Truran, G. A.; Mansour, E. M. E.;
Iguchi, S.; Ionescu, D.; El-Faham, A.; Riemer, C.; Warrass, R. J . Org.
Chem. 1999, 64, 4324-4338.
(63) Miller, S. C.; Scanlan, T. S. J . Am. Chem. Soc. 1998, 120, 2690-
2691.
(42) Yan, B.; Li, W. J . Org. Chem. 1997, 62, 9354-9357.
(43) Vazquez, J .; Albericio, F. Tetrahedron Lett. 2001, 42, 6691-
6693.
(44) Cournoyer, J . J .; Kshirsagar, T.; Fantauzzi, P. P.; Figliozzi, G.
M.; Makdessian, T.; Yan, B. J . Comb. Chem. 2002, 4, 120-124.
(45) Shannon, S. K.; Barany, G. J . Comb. Chem. 2004, 6, 165-170.
(46) Sasaki, Y.; Coy, D. H. Peptides 1987, 8, 119-121.
(47) Sharma, S. K.; Songster, M. F.; Colpitts, T. L.; Hegyes, P.;
Barany, G.; Castellino, F. J . J . Org. Chem. 1993, 58, 4993-4996.
(48) Songster, M. F.; Va´gner, J .; Barany, G. Lett. Pept. Sci. 1996, 2,
265-270.
(49) J ensen, K. J .; Alsina, J .; Songster, M. F.; Vagner, J .; Albericio,
F.; Barany, G. J . Am. Chem. Soc. 1998, 120, 5441-5452.
(50) Alsina, J .; J ensen, K. J .; Albericio, F.; Barany, G. Chem. Eur.
J . 1999, 5, 2787-2795.
(64) Rinnova, M.; Lebl, M.; Soucek, M. Lett. Pept. Sci. 1999, 6, 15-
22.
(65) Fields, G. B.; Lauer-Fields, J . L.; Liu, R.; Barany, G. In
Synthetic Peptides. A User’s Guide; Grant, G. A., Ed.; Oxford University
Press: New York, 2002; pp 93-219.
(66) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70-77.
(67) Badyal, J . P.; Cameron, A. M.; Cameron, N. R.; Coe, D. M.; Cox,
R.; Davis, B. G.; Oates, L. J .; Oye, G.; Steel, P. G. Tetrahedron Lett.
2001, 42, 8531-8533.
(68) Reddy, M. P.; Voelker, P. J . Int. J . Pept. Protein Res. 1988, 31,
345-348.
J . Org. Chem, Vol. 69, No. 14, 2004 4587