Affinity Ligands for Brain Cannabinoid Receptor
J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 10 1973
(CDCl3) δ 4.04 (s, 3H), 7.69 (m, 1H), 8.22 (d, 1H, J ) 8.2 Hz),
8.35 (dd, 1H, J ) 9.6, 2.4 Hz), 8.41 (dd, 1H, J ) 7.3, 1.2 Hz),
8.83 (d, 1H, J ) 2.3 Hz), 9.15 (d, 1H, J ) 9.5 Hz); CIMS (NH3)
m/ e 231 (M+).
tion is given on any current masthead page. Atomic coordi-
nates may also be obtained from the Cambridge Crystallo-
graphic Data Centre (Cambridge University Chemical Lab-
oratory, Cambridge CB2 1EW, U.K.).
(6-Nitr o-1-n a p h th yl)[1-[2-(4-m or p h olin yl)eth yl]-1H-in -
d ol-3-yl]m eth a n on e (21). A mixture of the nitro ester 17
(550 mg, 2.38 mmol), 10% NaOH (10 mL), and methanol (20
mL) was refluxed for 1 h. After removal of solvent, the residue
was made acidic with 10% HCl and extracted with AcOEt. The
AcOEt extract was washed with water, dried over Na2SO4, and
evaporated to leave a yellow solid (0.52 g, quantitative), which
was treated with thionyl chloride (5 mL) at reflux temperature
for 1 h and then evaporated to give acid chloride 19 (0.50 g,
quantitative). Reaction of 19 with indole 91 as for the
synthesis of 21 gave crude material which was purified by
chromatography (CHCl3-MeOH, 50:1, v/v) and recrystallized
from AcOEt-hexane to afford 21 (230 mg, 22%) as colorless
prisms: mp 217-8 °C; IR (KBr) 1620, 1590, 1530, 1385, 1345
cm-1; 1H NMR (CDCl3) δ 2.4 (m, 4H), 2.72 (t, 2H, J ) 6.3 Hz),
3.5 (m, 4H), 4.19 (t, 2H, J ) 6.3 Hz), 7.4 (m, 3H), 7.46 (s, 1H),
7.72 (dd, 1H, J ) 8.2, 7.2 Hz), 7.89 (dd, 1H, J ) 7.1, 1.2 Hz),
8.18 (d, 1H, J ) 8.3 Hz), 8.22 (dd, 1H, J ) 9.4, 2.3 Hz), 8.36
(d, 1H, J ) 9.3 Hz), 8.48 (m, 1H), 8.87 (d, 1H, J ) 2.2 Hz);
CIMS (NH3) m/e 430 (MH+).
Refer en ces
(1) Bell, M. R.; D’Ambra, T. E.; Kumar, V.; Eissenstat, M. A.;
Herrmann, J . L.; Wetzel, J . R.; Rosi, D.; Philion, R. E.; Daum,
S. J .; Hlasta, D. J .; Kullnig, R. K.; Ackerman, J . H.; Haubrich,
D. R.; Luttinger, D. A.; Baizman, E. R.; Miller, M. S.; Ward, S.
J . Antinociceptive (Aminoalkyl)indoles. J . Med. Chem. 1991, 34,
1099-1110.
(2) D’Ambra, T. E.; Estep, K. G.; Bell, M. R.; Eissenstat, M. A.; J osef,
K. A.; Ward, S. J .; Haycock, D. A.; Baizman, E. R.; Casiano, F.
M.; Beglin, N. C.; Chippari, S. M.; Grego, J . D.; Kullnig, R. K.;
Daley, G. T. Conformationally Restrained Analogues of Prava-
doline-Nanomolar Potent, Enantioselective, (Aminoalkyl)indole
Agonists of the Cannabinoid Receptor. J . Med. Chem. 1992, 35,
124-135.
(3) Eissenstat, M. A.; Bell, M. R.; D’Ambra, T. E.; Alexander, E. J .;
Daum, S. J .; Ackerman, J . H.; Gruett, M. D.; Kumar, V.; Estep,
K. G.; Olefirowicz, E. M.; Wetzel, J . R.; Alexander, M. D.;
Weaver, J . D., III; Haycock, D. A.; Luttinger, D. A.; Casiano, F.
M.; Chippari, S. M.; Kuster, J . E.; Stevenson, J . I.; Ward, S. J .
(Aminoalkyl)indoles: Structure-Activity Relationships of Novel
Cannabinoid Mimetics. J . Med. Chem. 1995, 38, 3094-3105.
(4) Haubrich, D. R.; Ward, S. J .; Baizman, E.; Bell, M. R.; Bradford,
J .; Ferrari, R.; Miller, M.; Perrone, M.; Pierson, A. K.; Saelens,
J . K.; Luttinger, D. Pharmacology of Pravadoline: A New
Analgesic Agent. J . Pharmacol. Exp. Ther. 1990, 255, 511-522.
(5) Ward, S. J .; Mastriani, D.; Casiano, F.; Arnold, R. Pravadoline:
Profile in Isolated Tissue Preparations. J . Pharmacol. Exp. Ther.
1990, 255, 1230-1239.
(6) Ward, S. J .; Baizman, E.; Bell, M.; Childers, S.; D’Ambra, T.;
Eissenstat, M.; Estep, K.; Haycock, D.; Howlett, A.; Luttinger,
D.; Miller, M.; Pacheco, M. (Aminoalkyl)indoles (AAIs): A New
Route to the Cannabinoid Receptor? NIDA Res. Monogr. 1990,
105, 425-426.
(7) Pacheco, M. C.; Childers, S. R.; Arnold, R.; Casiano, F.; Ward,
S. J . (Aminoalkyl)indoles: Actions on Specific G-protein-linked
Receptors. J . Pharmacol. Exp. Ther. 1991, 257, 170-183.
(8) Kuster, J . E.; Stevenson, J . I.; Ward, S. J .; D’Ambra, T. E.;
Haycock, D. A. (Aminoalkyl)indole Binding in Rat Cerebellum:
Selective Displacement by Natural and Synthetic Cannabinoids.
J . Pharmacol. Exp. Ther. 1993, 264, 1352-1363.
(9) Mackie, K.; Hille, B. Cannabinoids Inhibit N-Type Calcium
Channels in Neuroblastoma- Glioma Cells. Proc. Natl. Acad. Sci.
U.S.A. 1992, 89, 3825-3829.
(10) Matsuda, L. A.; Lolait, S. J .; Brownstein, M. J .; Young, A. C.;
Bonner, T. I. Structure of a Cannabinoid Receptor and Func-
tional Expression of the Cloned cDNA. Nature 1990, 346, 561-
564.
(11) Gerard, C. M.; Mollereau, C.; Vassart, G.; Parmentier, M.
Molecular Cloning of a Human Cannabinoid Receptor Which Is
Also Expressed in Testis. Biochem. J . 1991, 279, 129-134.
(12) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Molecular Character-
ization of a Peripheral Receptor for Cannabinoids. Nature 1993,
365, 61-65.
(13) Howlett, A. C.; Bidaut-Russell, M.; Devane, W. A.; Melvin, L.
S.; J ohnson, M. R.; Herkenham, M. The Cannabinoid Receptor-
Biochemical, Anatomical and Behavioral Characterization. Trends
Neurosci. 1990, 13, 420-423.
(14) Abood, M. E.; Martin, B. R. Neurobiology of Marijuana Abuse.
Trends Pharmacol. Sci. 1992, 13, 201-206.
(15) Howlett, A. C. Pharmacology of Cannabinoid Receptors. Annu.
Rev. Pharmacol. Toxicol. 1995, 35, 607-634.
(16) Leuck, G. J .; Perkins, R. P.; Whitmore, F. C. The Mercuration
of Naphthalic Acids. J . Am. Chem. Soc. 1929, 51, 1831.
(17) Compton, D. R.; Gold, L. H.; Ward, S. J .; Balster, R. L.; Martin,
B. R. (Aminoalkyl)indole Analogs: Cannabimimetic Activity of
a Class of Compounds Structurally Distinct from ∆9-Tetrahy-
drocannabinol. J . Pharmacol. Exp. Ther. 1992, 263, 1118-1126.
(18) J ohnson, M. R.; Melvin, L. S. The Discovery of Nonclassical
Cannabinoid Analgetics. In Cannabinoids as Therapeutic Agents;
Mechoulam, R., Ed.; CRC Press: Boca Raton, FL, 1986; pp 121-
145.
(6-Isot h iocya n a t o-1-n a p h t h yl)[1-[2-(4-m or p h olin yl)-
eth yl]-1H-in d ol-3-yl]m eth a n on e (22). The nitroindole 21
was treated as in the conversion of 11 to 12. After workup,
the crude 22 was purified by chromatography (AcOEt-hexane,
2:1, v/v) and recrystallized from AcOEt-hexane to afford 22
(85 mg from 220 mg of 21, 38%) as pale orange prisms: mp
160-1 °C; IR (KBr) 2030, 1630 cm-1 1H NMR (CDCl3) δ
;
2.41(m, 4H), 2.72 (m, 2H), 3.58 (m, 4H), 4.19 (m, 2H), 7.47 (s,
1H), 7.59 (m, 1H), 7.70 (m, 1H), 7.76 (d, 1H, J ) 2.1 Hz), 7.92
(d, 1H, J ) 8.4 Hz), 8.21 (d, 1H, J ) 8.9 Hz), 8.48 (m, 1H);
CIMS (NH3) m/ e 430 (MH+). Anal. (C26H23O2N3S) C, H, N,
S.
(3-Nitr o-1-n a p h th yl)[1-[2-(4-m or p h olin yl)eth yl]-1H-in -
d ol-3-yl]m eth a n on e (23). As in the synthesis of 21, nitro
ester 18 (8.5 g) was converted to acid chloride 20 which was
reacted with indole 9 (6.10 g). After workup, the crude product
was purified by chromatography (CHCl3-MeOH, 50:1, v/v) and
recrystallized from AcOEt-hexane to afford 23 (4.58 g, 40.3%)
as yellow prisms: mp 180-2 °C; IR (KBr) 1630, 1530, 1400,
1350, 1335 cm-1; 1H NMR (CDCl3) δ 2.40 (m, 4H), 2.73 (t, 2H,
J ) 6.3 Hz), 3.52 (m, 4H), 4.20 (t, 2H, J ) 6.3 Hz), 7.38-7.44
(m, 3H), 7.42 (d, 1H, J ) 1.2 Hz), 7.66-7.74 (m, 2H), 8.10-
8.16 (m, 1H), 8.24-8.30 (m, 1H), 8.43 (d, 1H, J ) 2.2 Hz),
8.48-8.56 (m, 1H), 8.92 (d, 1H, J ) 2.1 Hz); CIMS (NH3) m/ e
430 (MH+).
(3-Isot h iocya n a t o-1-n a p h t h yl)[1-[2-(4-m or p h olin yl)-
eth yl]-1H-in d ol-3-yl]m eth a n on e (24). As described in the
preparation of isothiocyanate 22, the nitro compound 23 was
reduced by Fe-HCl in aqueous EtOH and treated with thio-
phosgene. The crude product was purified by chromatography
(CHCl3-MeOH, 50:1, v/v) and recrystallized twice from AcOEt-
hexane to afford 24 (410 mg, 12%) as colorless prisms: mp
143-4 °C; IR (KBr) 2080, 1625, 1525, 1400, 1200 cm-1 1H
;
NMR (CDCl3) δ 2.40 (m, 4H), 2.72 (t, 2H, J ) 6.3 Hz), 3.54
(m, 4H), 4.19 (t, 2H, J ) 6.3 Hz), 7.36-7.43 (m, 3H), 7.45-
7.60 (m, 3H), 7.46 (s, 1H), 7.81 (d, 1H, J ) 1.9 Hz), 7.85 (d,
1H, J ) 8 Hz), 8.10 (d, 1H, J ) 8.3 Hz), 8.46-8.53 (m, 1H);
CIMS (NH3) m/ e 442 (MH+). Anal. (C26H23O2N3S) C, H, N,
S.
Ack n ow led gm en t. This work was supported in part
by NIDA grants R01-DA06312 and K05-DA00182 to
A.C.H. and Office of Naval Research and NIDA funding
to J .L.F.-A. We thank Tracy Champion-Dorow, Cathe-
rine Cantrell, and Gerald Wilken for technical as-
sistance with the biological determinations in this
report.
(19) Razdan, R. K. Structure-Activity Relationships in Cannabinoids.
Pharmacol. Rev. 1986, 38, 75-149.
(20) Martin, B. R.; Compton, D. R.; Thomas, B. F.; Prescott, W. R.;
Little, P. J .; Razdan, R. K.; J ohnson, M. R.; Melvin, L. S.;
Mechoulam, R.; Ward, S. J . Behavioral, Biochemical, and
Molecular Modeling Evaluations of Cannabinoid Analogs. Phar-
macol. Biochem. Behav. 1991, 40, 471-478.
(21) Melvin, L. S.; Milne, G. M.; J ohnson, M. R.; Subramaniam, B.;
Wilken, G. H.; Howlett, A. C. Structure-Activity Relationships
for Cannabinoid Receptor-Binding and Analgesic Activity: Stud-
ies of Bicyclic Cannabinoid Analogs. Mol. Pharmacol. 1993, 44,
1008-1015.
Su p p or tin g In for m a tion Ava ila ble: X-ray diffraction
data for 12 including ORTEP drawing, crystal coordinates,
bond distances, and bond angles (7 pages). Ordering informa-