C. J. Burns et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1206–1209
1209
16. Illig, C. R.; Chen, J.; Wall, M. J.; Wilson, K. J.; Ballentine, S. K.; Rudolph, M. J.;
DesJarlais, R. L.; Chen, Y.; Schubert, C.; Petrounia, I.; Crysler, C. S.; Molloy, C. J.;
Chaikin, M. A.; Manthey, C. L.; Player, M. R.; Tomczuk, B. E.; Meegalla, S. K.
Bioorg. Med. Chem. Lett. 2008, 18, 1642.
17. Smalley, T. L., Jr.; Chamberlain, S. D.; Mills, W. Y.; Musso, D. L.; Randhawa,
S. A.; Ray, J. A.; Samano, V.; Frick, L. Bioorg. Med. Chem. Lett. 2007, 17,
6257.
18. Scott, D. A.; Aquila, B. M.; Bebernitz, G. A.; Cook, D. J.; Dakin, L. A.; Deegan, T. L.;
Hattersley, M. M.; Ioannidis, S.; Lyne, P. D.; Omer, C. A.; Ye, M.; Zheng, X. Bioorg.
Med. Chem. Lett. 2008, 18, 4794.
19. Irvine, K. M.; Burns, C. J.; Wilks, A. F.; Su, S.; Hume, D. A.; Sweet, M. J. FASEB J.
2006, 20, 1921.
The 3-methylbenzamide moiety of 15 further extends into the
hydrophobic region of the allosteric site. Overlay of our homology
model with a subsequently published crystallographic structure of
FMS, PDB code 3BEA,15 produced an RMSD of 1.5 Å over C
a atoms,
validating our FMS modeling approach. Compounds that bind to
the inactive conformation of kinases in this manner are commonly
referred to as Type II kinase inhibitors.27
In summary, we have developed a new series of Type II FMS
inhibitors with excellent biochemical and cellular potency. Our
ongoing efforts to improve the PK profile of this series will be re-
ported in due course.
20. For a description of biochemical assay conditions see: Burns, C. J.; Harte, M. F.;
Palmer, J. T. Inhibitors of kinase activity, WO2008058341.
21. KINOMEscanTM screen performed by AMBIT Biosciences, San Diego. See:
Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.;
Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;
Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.;
Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. Nat. Biotechnol. 2008,
26, 127.
Acknowledgments
The authors would like to thank our colleague James T. Palmer
for useful discussions and help in the preparation of this
manuscript.
22. Bone marrow macrophages (BMM) were isolated from C57BL6 murine bone
marrow using Miltenyi Biotec MACS beads (CD11b). BMM (3 ꢀ 104 cells/well)
were cultured in RPMI 1640 medium supplemented with 10% FBS, 2-
mercaptoethanol (50 mM) and the test compound for 1 h at 37 °C in 5% CO2.
CSF-1 (20 ng/mL, R&D Systems Inc., Minneapolis, MN) was then added and the
system was incubated for a further 5 days. The inhibitory activity of test
compounds against M-CSF induced BMM growth was determined using
Alamar BlueTM (Serotec). MNFS 60 cells [ATCC, CRL-1838] (5 ꢀ 103 cells/well)
were similarly cultured with CSF-1 for 72 h before addition of Alamar Blue.
HEK293 (4 ꢀ 105 cells/mL) and HepG2 cells (2 ꢀ 105 cells/mL) were cultured in
microtest plates in RPMI 1640 medium supplemented with 10% FBS and the
test compound for 72 h at 37 °C in 5% CO2. Cell proliferation was assessed using
Alamar BlueTM (Serotec).
References and notes
1. Woolford, J.; Rothwell, V.; Rohrschneider, L. Mol. Cell. Biol. 1985, 5, 3458.
2. Baiocchi, G.; Kavanagh, J. J.; Talpaz, M.; Wharton, J. T.; Gutterman, J. U.;
Kurzrock, R. Cancer 1991, 67, 990.
3. El Hajj Dib, I.; Mélanie, G.; Valery, S.; Romuald, M.; Michel, B.; Saïd, K. Leuk. Res.
2008, 32, 1279.
4. Ohno, H.; Uemura, Y.; Murooka, H.; Takanashi, H.; Tokieda, T.; Ohzeki, Y.; Kubo,
K.; Serizawa, I. Eur. J. Immunol. 2008, 38, 283.
23. Kitamura, M.; Lee, D.; Hayashi, S.; Tanaka, S.; Yoshimura, M. J. Org. Chem. 2002,
67, 8685.
5. Inaba, T.; Gotoda, T.; Harada, K.; Shimada, M.; Ohsuga, J.; Ishibashi, S.; Yazaki,
Y.; Yamada, N. J. Clin. Invest. 1995, 95, 1133.
24. All compounds were characterized by 1H NMR and reverse phase LCMS and
their purity determined to be >95%. Compound 15: A mixture of (S)-N-[1-(3-
aminophenyl)ethyl]-6-chloropyrazin-2-amine (11.45 g, 46 mmol), m-toluic
acid (9.4 g, 69 mmol), N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide
hydrochloride (17.6 g, 92 mmol), 4-pyrrolidinopyridine (1.36 g, 9.2 mmol)
and triethylamine (25.7 mL, 184 mmol) in dichloromethane (400 mL) was
stirred at room temperature for 48 hours. After this time the mixture was
washed successively with saturated aqueous sodium hydrogen carbonate (2 x
100 mL) and brine (100 mL), dried (MgSO4) and concentrated under reduced
pressure to give an orange oil which was purified by flash chromatography
(silica, ethyl acetate/hexanes) to give (S)-N-{3-[1-(6-chloropyrazin-2-
6. Marshall, D.; Cameron, J.; Lightwood, D.; Lawson, A. D. G. Inflamm. Bowel Dis.
2007, 13, 219.
7. Wyburn, K. R.; Jose, M. D.; Wu, H.; Atkins, R. C.; Chadban, S. J. Transplantation
2005, 80, 1641.
8. Lewis, C. E.; Pollard, J. W. Cancer Res. 2006, 66, 605.
9. Sica, A.; Rubino, L.; Mancino, A.; Larghi, P.; Porta, C.; Rimoldi, M.; Solinas, G.;
Locati, M.; Allavena, P.; Mantovani, A. Expert Opin. Ther. Targets 2007, 11, 1219.
10. Dose-escalating multiple dose study of PD-0360324 in combination with
methotrexate in patients with rheumatoid arthritis. ClinicalTrials.gov Identifier
NCT00550355.
11. Conway, J. G.; McDonald, B.; Parham, J.; Keith, B.; Rusnak, D. W.; Shaw, E.;
Jansen, M.; Lin, P.; Payne, A.; Crosby, R. M.; Johnson, J. H.; Frick, L.; Lin, M. H.;
Depee, S.; Tadepalli, S.; Votta, B.; James, I.; Fuller, K.; Chambers, T. J.; Kull, F. C.;
Chamberlain, S. D.; Hutchins, J. T. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16078.
12. Guo, J.; Marcotte, P. A.; McCall, J. O.; Dai, Y.; Pease, L. J.; Michaelides, M. R.;
Davidsen, S. K.; Glaser, K. B. Mol. Cancer Ther. 2006, 5, 1007.
ylamino)ethyl]phenyl}-3-methylbenzamide (14 g, 83%) as
a pale yellow
solid. 1H NMR (CDCl3, 300 MHz) d 1.58 (d, J 6.6 Hz, 3H), 2.42 (s, 3H), 4.85 –
4.94 (m, 1H), 5.16 (d, J6.6 Hz, 1H), 7.13 (d, J7.8 Hz, 1H), 7.31 – 7.37 (m, 3H), 7.49
– 7.52 (m, 1H), 7.61 – 7.65 (m, 2H), 7.67 (br s, 1H), 7.73 (br s, 1H), 7.78 (s, 1H),
7.86 (br s, 1H).
25. One recrystallisation of the racemic tartaric acid salt followed by liberation of
the free base gave the (S)-benzylamine with an ee of 90–92%. This material was
used in subsequent steps.
13. Myers, M. R.; Setzer, N. N.; Spada, A. P.; Persons, P. E.; Ly, C. Q.; Maguire, M. P.;
Zulli, A. L.; Cheney, D. L.; Zilberstein, A.; Johnson, S. E.; Franks, C. F.; Mitchell, K.
J. Bioorg. Med. Chem. Lett. 1997, 7, 421.
26. Homology models of FMS kinase in both the DFG-in and DFG-out
confirmations were constructed using Modeller: Sali, A.; Blundell, T. L. J. Mol.
Biol. 1993, 234, 779. Docking of FMS inhibitors was performed with Cytopia’s
14. Wall, M. J.; Chen, J.; Meegalla, S.; Ballentine, S. K.; Wilson, K. J.; DesJarlais, R. L.;
Schubert, C.; Chaikin, M. A.; Crysler, C.; Petrounia, I. P.; Donatelli, R. R.; Yurkow,
E. J.; Boczon, L.; Mazzulla, M.; Player, M. R.; Patch, R. J.; Manthey, C. L.; Molloy,
C.; Tomczuk, B.; Illig, C. R. Bioorg. Med. Chem. Lett. 2008, 18, 2097.
15. Huang, H.; Hutta, D. A.; Hu, H.; DesJarlais, R. L.; Schubert, C.; Petrounia, I. P.;
Chaikin, M. A.; Manthey, C. L.; Player, M. R. Bioorg. Med. Chem. Lett. 2008, 18, 2355.
‘structure based drug design’ in-house suite of programs, ChemaphoreTM
27. Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2, 358.
.