J. Xiao et al. / Tetrahedron Letters 49 (2008) 2656–2660
2659
Fig. 5. SEM image of PyTOH/Mg2+/DNA (mol. ratio, 1:2:1) (a), AFM image (b), and dynamic laser light scattering (c) of PyTOH/Mg2+/DNA (from
CONTIN analysis of the autocorrelation function) at a scattering angle of 90°. Samples were prepared from solution and transferred to fresh silica slice or
mica by drop-casting.
blies (Fig. 5b). The size of the aggregates of PyTOH/Mg2+
/
129, 6078; (i) Gan, H. Y.; Li, Y. L.; Liu, H. B.; Wang, S.; Li, C. H.;
Yuan, M. J.; Liu, X. F.; Wang, C. R.; Jiang, L.; Zhu, D. B.
Biomacromolecules 2007, 8, 1713.
DNA in aqueous solution was measured by dynamic light
scattering (DLS) (Fig. 5c). The CONTIN analysis of the
autocorrelation function shows a broad peak correspond-
ing to an average hydrodynamic radius (Rh) of approxi-
mately 210 nm at 298 K.
On the basis of the optical and CD properties described
above, it can be concluded that the self-assembly of
PyTOH/Mg2+/DNA formed left-handed helical stack
structures. The aggregation was initiated by the electro-
static interactions of PyTOH and DNA with Mg2+ as
co-complexation ion in aqueous solution. The mutation
rotation in the same direction avoided steric hindrance of
PyTOH and the aggregation could self-sort into helical
nanostructures.
In summary, we have synthesized an amphiphilic pyrene
derivative and demonstrated the self-assembly of PyTOH/
Mg2+/DNA in aqueous solution. Induced CD spectra were
observed in water indicating the formation of helical supra-
molecular structures. These observations should facilitate
the future design of related self-assembled materials with
the biological and electrooptical properties.
2. (a) Storhoff, J.; Mirkin, C. A. Chem. Rev. 1999, 99, 1849; (b) Park, S.
J.; Lazarides, A. A.; Mirkin, C. A.; Letsinger, R. L. Angew. Chem.,
Int. Ed. 2001, 40, 2909; (c) Seeman, N. C. Nature 2003, 421, 427; (d)
Liu, H. P.; He, Y.; Ribbe, A. E.; Mao, C. D. Biomacromolecules 2005,
6, 2943; (e) Wagner, C.; Wagenknecht, H. A. Org. Lett. 2006, 8, 4191;
(f) Ren, K. F.; Shen, J. C. Biomaterials 2006, 27, 1152.
3. (a) Onda, M.; Yoshihara, K.; Koyano, H.; Ariga, K.; Kunitake, T. J.
Am. Chem. Soc. 1996, 118, 8524; (b) Berti, D.; Barbaro, P.; Bucci, H.;
Baglioni, P. J. Phys. Chem. B 1999, 103, 4916; (c) Moreau, L.;
Barthelemy, P.; El Maataoui, M.; Grinstaff, M. W. J. Am. Chem. Soc.
2004, 126, 7533; (d) Wang, W.; Li, A. D. Q. Bioconjugate Chem. 2007,
18, 1036.
4. (a) Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998,
391, 775; (b) Monson, C. F.; Woolley, A. T. Nano Lett. 2003, 3, 359;
(c) Becerril, H. A.; Stoltenberg, R. M.; Monson, C. F.; Woolley, A. T.
J. Mater. Chem. 2004, 14, 611; (d) Berti, L.; Alessandrini, A.; Facci, P.
J. Am. Chem. Soc. 2005, 127, 11216.
5. (a) Winnik, F. M. Chem. Rev. 1993, 93, 587; (b) Arimori, S.; Bell, M.
L.; Oh, C. S.; James, T. D. Org. Lett. 2002, 4, 4249; (c) Martin, R. B.;
Qu, L. W.; Lin, Y.; Harruff, B. A.; Bunker, C. E.; Gord, J. R.; Allard,
L. F.; Sun, Y. P. J. Phys. Chem. B 2004, 108, 11447; (d) Martinez, R.;
Espinosa, A.; Tarraga, A.; Molina, P. Org. Lett. 2005, 7, 5869; (e)
Kamikawa, Y.; Kato, T. Org. Lett. 2006, 8, 2463; (f) Yang, Z. M.; Xu,
B. J. Mater. Chem. 2007, 17, 2385; (g) Xiao, J. C.; Li, Y. J.; Song, Y.
B.; Jiang, L.; Li, Y. L.; Wang, S.; Liu, H. B.; Xu, W.; Zhu, D. B.
Acknowledgments
Tetrahedron Lett. 2007, 48, 7599; (h) Zhang, S.; Lu, F.; Gao, L.; Ding,
¨
L.; Fang, Y. Langmuir 2007, 23, 1584; (i) Xiao, J. C.; Xu, J. L.; Cui,
S.; Liu, H. B.; Wang, S.; Li, Y. L. Org. Lett. 2008, 10, 645.
This work was supported by the National Natural
Science Foundation of China (20531060, 20418001,
20473102) and the Major State Basic Research develop-
ment Program (2006CB806200, 2005CB623602).
6. (a) Dai, T. Y.; Marotta, S. P.; Sheardy, R. D. Biochemistry 1995, 34,
3655; (b) Yu, H. T.; Hurley, L. H.; Kerwin, S. M. J. Am. Chem. Soc.
1996, 118, 7040; (c) Rudyak, S. G.; Brenowitz, M.; Shrader, T. E.
Biochemistry 2001, 40, 9317; (d) Bates, A. D.; Callen, B. P.; Cooper, J.
M.; Cosstick, R.; Geary, C.; Glidle, A.; Jaeger, L.; Pearson, J. L.;
´
´
Proupın-Perez, M.; Xu, C. G.; Cumming, D. R. S. Nano Lett. 2006, 6,
445.
References and notes
7. (a) Peeters, E.; van Hal, P. A.; Knol, J.; Brabec, C. J.; Sariciftci, N. S.;
Hummelen, J. C.; Janssen, R. A. J. J. Phys. Chem. B 2000, 104, 10174;
(b) Loewe, R. S.; Ambroise, A.; Muthukumaran, K.; Padmaja, K.;
Lysenko, A. B.; Mathur, G.; Li, Q.; Bocian, D. F.; Misra, V.; Lindsey,
J. S. J. Org. Chem. 2004, 69, 1453; (c) Viau, L.; Maury, O.; Bozec, H.
L. Tetrahedron Lett. 2004, 45, 125; (d) Leroy-Lhez, S.; Fages, F. Eur.
J. Org. Chem. 2005, 2005, 2684; (e) Compounds 2, 4, and 5 were
synthesized as follows: Compound 2: A mixture of triethyl phosphate
(1.35 g, 8.11 mmol) and 1-(bromomethyl)-4-iodobenzene (1, 2.0 g,
6.76 mmol) was stirred for 4 h at 140–145 °C. The reaction mixture
was cooled down to 75 °C, and the excess triethyl phosphate was
removed by distillation under reduced pressure to give a white oil 2
1. (a) Lehn, J. M. Supramolecular Chemistry, Concepts and Perspectives;
VCH: Weinheim, 1995; (b) Cornelessen, J. J. L. M.; Roman, A. E.;
Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039;
(c) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P.
Chem. Rev. 2001, 101, 4071; (d) Albrecht, M. Chem. Rev. 2001, 101,
3457; (e) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W. Chem. Rev.
2005, 105, 1491; (f) Moreau, L.; Campins, N.; Grinstaff, M. W.;
Barthelemy, P. Tetrahedron Lett. 2006, 47, 7117; (g) Tang, Y. L.;
Feng, F. D.; He, F.; Wang, S.; Li, Y. L.; Zhu, D. B. J. Am. Chem. Soc.
2006, 128, 14972; (h) Janssen, P. G. A.; Vandenbergh, J.; van Dongen,
J. L. J.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2007,