Synthesis of 2-Azido-1-alkenes
SCHEME 1. ꢀ-Fragmentation of
Vinyl azides are also useful intermediates in the synthesis
of heterocycles, with versatility endowed by being precursors of
vinyl nitrenes.7 Since the pioneering work on the addition
of iodine azide to olefins and the subsequent elimination of
hydrogen iodine by Hassner and co-workers,8 several methods
for the synthesis of these compounds have been developed.7,9
Comparatively, the synthesis of halovinyl azides whose halogen
atom offers another reaction site has received much less
attention. Although they can also be prepared by addition of
halogen azides to vinyl halides,10 other syntheses have been
developed to avoid the use of these highly reactive and
dangerous reagents: (a) the reaction of R-oxophosphonium ylides
with N-halosuccinimides in the presence of azidotrimethylsi-
lane11 and (b) the addition of hydrazoic acid to some allenyl
halides.12 However, access to halovinyl azides by these methods
is limited to specific structures; e.g., none of them could
apparently be used for the synthesis of fluorovinyl azides or
for substances with a terminal 2-azido-1-halo-1-alkene arrange-
ment. Indeed, there exists no general method to prepare 2-azido-
1-halo-1-alkenes, the only report being on the isolation of the
R-azido-ꢀ-chloro- and R-azido-ꢀ-bromostyrene from the reaction
of (haloethynyl)benzene with sodium azide in low yield.13 One
of the most interesting features of vinyl azides is their easy
thermal or photochemical transformation into 2H-azirines.8a–c,14
3-Azido-2,3-dideoxyhexopyranoses and
3-Azido-2,3-dideoxy-2-halohexopyranosesa
a ARF ) alkoxyl radical fragmentation reaction; R ) protective groups.
It should be possible, using this methodology and taking into
account the availability of the 3-azido-2,3-dideoxyhexopyranose
Ia compounds, to synthesize chiral ꢀ-iodo azides IIa and
hence vinyl azides IIIa and 2H-azirines IVa from carbohy-
drates (Scheme 1, X ) H). 3-Azido-2,3-dideoxyhexopyranose
compounds were conveniently prepared in high yield by acid-
catalyzed reaction of 2-deoxyhex-1-enitol derivatives (glycals) with
NaN3. The reaction proceeded through Michael addition of the
azide anion over an R,ꢀ-unsaturated aldehyde intermediate.17
This methodology could be extended to the preparation of
polyhydroxylated 2-azido-1-halo-1-alkenes IIIb starting from
halohydrins Ib and after chemoselective dehydroiodination of
the 1,1-dihalo alditol IIb intermediate. In addition, the ther-
molysis or photolysis of these halovinyl azide IIIb offers an
unrivaled opportunity to study the properties and stability of
the hitherto unknown 3-alkyl-2-halo-2H-azirines IVb (Scheme
1, X ) Hal).
Earlier work from our laboratory revealed hypervalent iodine
reagents in the presence of molecular iodine to be a valuable
oxidation system for the formation of anomeric alkoxyl radicals
from carbohydrate alcohols.15 The glycopyran-1-O-yl radical
thus formed triggers the facile radical ꢀ-fragmentation of the
C1-C2 bond to give a C2 radical.16 An electron-withdrawing
group at this position inhibits the oxidation of the C-radical,
which is finally trapped by an atom of iodine from the reaction
medium. This should also occur in the case of 2-deoxy
carbohydrates, allowing for the efficient synthesis of 1-iodoaldi-
tols with one carbon less than the starting carbohydrate.
(7) For reviews, see: (a) Bra¨se, S.; Gil, C.; Knepper, K.; Zimmermann, V.
Angew. Chem., Int. Ed. 2005, 44, 5188–5240. (b) Scriven, E. F. V.; Turnbull,
K. Chem. ReV. 1988, 88, 297–368. (c) Hassner, A. In Azides and Nitrenes:
ReactiVity and Utility; Scriven, E. F. V., Ed.; Academic Press: Orlando, 1984;
pp 35-94. (d) L’abbe´, G. Angew. Chem., Int. Ed. Engl. 1975, 14, 775–782. (e)
L’abbe´, G.; Hassner, A. Angew. Chem., Int. Ed. Engl. 1971, 10, 98–104. (f)
Smolinsky, G.; Pryde, C. A. In The Chemistry of the Azido Group; Patai, S.,
Ed.; John Wiley and Sons: London, 1971; pp 555-585. For recent references,
see: (g) Singh, P. N. D.; Carter, C. L.; Gudmundsdottir, A. D. Tetrahedron Lett.
2003, 44, 6763–6765. (h) Timen, A. S.; Risberg, E.; Somfai, P. Tetrahedron
Lett. 2003, 44, 5339–5341. (i) Mazal, C.; Jonas, J.; Za´k, Z. Tetrahedron 2002,
58, 2729–2733.
Results and Discussion
To assess the potential scope and limitations of this method,
experiments were carried out using a variety of 3-azido-2,3-
dideoxyhexopyranose compounds 7-12 as outlined in Table
1. In previous communications, we described the preliminary
results obtained,18 and we now disclose herein the full details
of these experiments. The reaction of glycals 1-6 with NaN3
in the presence of HgSO4 and H2SO4 afforded 1,3-hydroxy
azides 7-12 in good yields as diastereoisomeric mixtures at
(8) (a) Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1965, 87, 4203–4204. (b)
Fowler, F. W.; Hassner, A.; Levy, L. A J. Am. Chem. Soc. 1967, 89, 2077–2082.
(c) Hassner, A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686–2691. (d) Hassner,
A.; Boerwinkle, F. P.; Levy, A. B. J. Am. Chem. Soc. 1970, 92, 4879–4883.
(9) For recent syntheses of vinyl azides, see: (a) Huang, X.; Shen, R.; Zhang,
T. J. Org. Chem. 2007, 72, 1534–1537. (b) Zhu, W.; Ma, D. W. Chem. Commun.
2004, 888–889.
(16) For recent reviews on alkoxyl radical chemistry, see: (a) Majetich, G.
Tetrahedron 1995, 51, 7095–7129. (b) Feray, L.; Kuznersov, N.; Renaud, P. In
Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, 2001; Vol. 2, pp 246-278. (c) Sua´rez, E.; Rodr´ıguez, M. S. In
Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, 2001; Vol. 2, pp 440-454. (d) Robertson, J.; Pillai, J.; Lush, R. K.
Chem. Soc. ReV. 2001, 30, 94–103. (e) Togo, H.; Katohgi, M. Synlett 2001,
(10) (a) Ciabattoni, J.; Cabell, M. J. Am. Chem. Soc. 1971, 93, 1482–1483.
(b) Padwa, A.; Blacklock, T. J.; Carlsen, P. H. J.; Pulwer, M. J. Org. Chem.
1979, 44, 3281–3287. (c) Gallagher, T. C.; Sasse, M. J.; Storr, R. C. J. Chem.
Soc., Chem. Commun. 1979, 419–420.
ˇ
565–581. (f) Hartung, J.; Gottwald, T.; Spehar, K. Synthesis 2002, 1469–1498.
´
(11) Rocha Gonsalves, A. M. d’A.; Cabral, A. M. T. D. P. V.; Pinho e Melo,
T. M. V. D.; Gilchrist, T. L. Synthesis 1997, 673–676.
(g) Cekovic, Z Tetrahedron 2003, 59, 8073–8090.
(17) (a) Liberek, B.; Sikorski, A.; Melcer, A.; Konitz, A. Carbohydr. Res.
2003, 338, 795–799. (b) Liberek, B.; Dabrowska, A.; Frankowski, R.; Matusze-
wska, M.; Smiatacz, Z Carbohydr. Res. 2002, 337, 1803–1810. (c) Dabrowska,
A.; Dokurno, P.; Konitz, A.; Smiatacz, Z. Carbohydr. Res. 2000, 323, 230–234.
(d) Wengel, J.; Pedersen, E. B. Synthesis 1991, 451–454. (e) Wengel, J.; Lau,
J.; Pedersen, E. B.; Nielsen, C. M. J. Org. Chem. 1991, 56, 3591–3594. (f)
Abbaci, B.; Florent, J.-C.; Monneret, C. J. Chem. Soc., Chem. Commun. 1989,
1896–1897. (g) Florent, J.-C.; Monneret, C. J. Chem. Soc., Chem. Commun.
1987, 1171–1172.
(12) Fotsing, J. R.; Banert, K. Synthesis 2006, 261–272.
(13) Tanaka, R.; Yamabe, K. J. Chem. Soc., Chem. Commun. 1983, 329–
330.
(14) Smolinsky, G. J. Org. Chem. 1962, 27, 3557–3559.
(15) (a) Armas, P.; Francisco, C. G.; Sua´rez, E. Angew. Chem., Int. Ed. Engl.
1992, 31, 772–774. (b) Armas, P.; Francisco, C. G.; Sua´rez, E. J. Am. Chem.
Soc. 1993, 115, 8865–8866. (c) Herna´ndez, R.; Leo´n, E. I.; Moreno, P.; Sua´rez,
E. J. Org. Chem. 1997, 62, 8974–8975. (d) Francisco, C. G.; Freire, R.; Gonza´lez,
C. C.; Sua´rez, E. Tetrahedron: Asymmetry 1997, 8, 1971–1974. (e) Francisco,
C. G.; Mart´ın, C. G.; Sua´rez, E. J. Org. Chem. 1998, 63, 2099–2109. (f)
Francisco, C. G.; Mart´ın, C. G.; Sua´rez, E. J. Org. Chem. 1998, 63, 8092–8093.
(18) (a) Alonso-Cruz, C. R.; Kennedy, A. R.; Rodr´ıguez, M. S.; Sua´rez, E.
Org. Lett. 2003, 5, 3729–3732. (b) Alonso-Cruz, C. R.; Kennedy, A. R.;
Rodr´ıguez, M. S.; Sua´rez, E. Tetrahedron Lett. 2007, 48, 7207–7210.
J. Org. Chem. Vol. 73, No. 11, 2008 4117