10.1002/anie.201802899
Angewandte Chemie International Edition
COMMUNICATION
provides the highest -stereoselectivity. Reactivity tuning through
protecting group alteration is equally effective in this series (cf.
products 36A/B vs product 34A/B, Table 4). In this series we
finally probed mannuronic acid acceptors 37 and 38. The C-5-
carboxylate in these acceptors has a similar disarming effect on
the reactivity of the C-4-OH as observed in the corresponding
glucose acceptors 1 and 17 and glucuronic acid acceptors 4 and
20.
Keywords: Glycosylation, stereoselectivity, acceptor reactivity,
reactivity tuning, mechanism.
[1]
a) M. Sinnott, Carbohydrate Chemistry and Biochemistry: Structure and
Mechanism, The Royal Society Of Chemistry, 2007; b) L. K. Mydock, A.
V. Demchenko, Org. Biomol. Chem. 2010, 8, 497–510; c) X. Zhu, R. R.
Schmidt, Angew. Chem. Int. Ed. 2009, 48, 1900–1934; d) P. Peng, R. R.
Schmidt, Acc. Chem. Res. 2017, 50, 1171–1183.
[2]
[3]
a) C. S. Bennett, Selective Glycosylations: Synthetic Methods and
Catalysts, Wiley VCH Verlag GmbH, 2017; b) S. S. Nigudkar, A. V.
Demchenko, Chem. Sci. 2015, 6, 2687–2704; c) D. M. Whitfield, J. Guo,
J. Carbohydr. Chem. 2017, 36, 59–99.
Table 4. Glycosylation results of galactosyl acceptors 29-32, mannosyl
acceptors 33-36, and mannuronic acid acceptor 37 and 38.
a) H. Paulsen, Angew. Chem. Int. Ed. Engl. 1982, 21, 155–173; b) J. D.
C. Codée, R. E. J. N. Litjens, L. J. van den Bos, H. S. Overkleeft, G. A.
van der Marel, Chem. Soc. Rev. 2005, 34, 769–782; c) J. D. C. Codée,
A. Ali, H. S. Overkleeft, G. A. van der Marel, Comptes Rendus Chim.
2011, 14, 178–193.
Donor A
Donor B
Donor A
Donor B
Acceptor
:
:
Acceptor
:
:
(yield)
(yield)
(yield)
(yield)
[4]
a) B. Fraser-Reid, J. C. López, in React. Tuning Oligosacch. Assem.
(Eds.: B. Fraser-Reid, J. Cristóbal López), Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011, pp. 1–29; b) B. Fraser-Reid, Z. Wu, U. E.
Udodong, H. Ottosson, J. Org. Chem. 1990, 55, 6068–6070; c) N. L.
Douglas, S. V. Ley, U. Lücking, S. L. Warriner, J. Chem. Soc. [Perkin 1]
1998, 51–66; d) Z. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T.
Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, 121, 734–753; e) T. G.
Frihed, M. Bols, C. M. Pedersen, Chem. Rev. 2015, 115, 4963–5013; f)
M. T. C. Walvoort, G. A. van der Marel, H. S. Overkleeft, J. D. C. Codée,
Chem. Sci. 2013, 4, 897–906.
29
29A
12 : 1
(72%)
29B
3 : 1
(86%)
33
33A
1 : 2
(76%)
33B
<1 : 20
(72%)
30
31
32
37
30A
6 : 1
(85%)
30B
1 : 1.3
(88%)
34
35
36
38
34A
8 : 1
(82%)
34B
1.1 : 1
(70%)
31A
10 : 1
(87%)
31B
1 : 1.3
(73%)
35A
>20 : 1
(95%)
35B
7 : 1
(65%)
[5]
[6]
a) J. R. Krumper, W. A. Salamant, K. A. Woerpel, J. Org. Chem. 2009,
74, 8039–8050; b) M. G. Beaver, K. A. Woerpel, J. Org. Chem. 2010, 75,
1107–1118; c) C. M. Pedersen, J. Olsen, A. B. Brka, M. Bols, Chem. –
Eur. J. 2011, 17, 7080–7086; d) J. Kalikanda, Z. Li, Carbohydr. Res.
2011, 346, 2380–2383; f). K. Le Mai Hoang, X.-W. Liu, Nat. Commun.
2014, 5, 5051.
32A
>20 : 1
(83%)
32B
11 : 1
(90%)
36A
>20 : 1
(100%)
36B
>20 : 1
(92%)
37A
2.5 : 1
(100%)
37B
1 : 5
(61%)
38A
2.2 : 1
(64%)
38B
1 : 4.8
(60%)
Selected examples: a) P. Sinaÿ, Pure Appl. Chem. 1978, 50, 1437–1452;
b) H. Paulsen, O. Lockhoff, Chem. Ber. 1981, 114, 3079–3101; c) B.
Schumann, S. G. Parameswarappa, M. P. Lisboa, N. Kottari, F. Guidetti,
C. L. Pereira, P. H. Seeberger, Angew. Chem. Int. Ed. 2016, 55, 14431–
14434; d) T. H. Schmidt, R. Madsen, Eur. J. Org. Chem. 2007, 2007,
3935–3941; e) H. A. Orgueira, A. Bartolozzi, P. Schell, P. H. Seeberger,
Angew. Chem. Int. Ed. 2002, 41, 2128–2131; f) D. Crich, V. Dudkin, J.
Am. Chem. Soc. 2001, 123, 6819–6825; g) S. Kaeothip, S. J. Akins, A.
V. Demchenko, Carbohydr. Res. 2010, 345, 2146–2150.
Overall, the acceptor reactivity-glycosylation stereoselectivity
relationship that was established with a set of fluorinated model
nucleophiles can be directly translated to carbohydrate acceptors.
Just like the reactivity of glycosyl donors, the reactivity of
carbohydrate acceptors can be tuned by manipulation of their
protecting groups, and their reactivity can be exploited to skew
the stereoselectivity of glycosylations in the desired direction.[8a]
This adds a powerful tool for the stereoselective construction of
glycosidic linkages. Commonly used protecting- and functional
groups can be used to moderate the reactivity of the glycosyl
acceptors, and the protecting groups can be further fine-tuned by
changing their electron-withdrawing properties. It is shown that
the strategic replacement of a single benzyl group for a benzoyl
ester (in effect only changing two hydrogen atoms for an oxygen
atom) can turn a non-selective condensation into a highly
selective cis-glycosylation. The concept of acceptor reactivity
tuning holds for a variety of acceptor configurations and
nucleophilic sites in the acceptor. By using the two model donors
A and B, the reactivity of any other relevant acceptor can be
gauged in simple test reactions, through comparison to the
reactivity/selectivity of the current set of acceptors. The reactivity
can then be appropriately adjusted by installation of the proper
functional/protecting group pattern.
[7]
[8]
a) B. Fraser-Reid, J. C. López, A. M. Gómez, C. Uriel, Eur. J. Org. Chem.
2004, 2004, 1387–1395; b) Bohé L., Crich D., Trends Glycosci.
Glycotechnol. 2010, 22, 1–15; c) L. G. Green, S. V. Ley, B. Ernst, G. W.
Hart, P. Sinaÿ, in Carbohydr. Chem. Biol., Wiley-VCH Verlag GmbH,
2000, pp. 427–448.
a) S. van der Vorm, T. Hansen, H. S. Overkleeft, G. A. van der Marel, J.
D. C. Codee, Chem. Sci. 2017, 8, 1867–1875; b) S. van der Vorm, H. S.
Overkleeft, G. A. van der Marel, J. D. C. Codée, J. Org. Chem. 2017, 82,
4793–4811; c) B. Hagen, S. Ali, H. S. Overkleeft, G. A. van der Marel, J.
D. C. Codée, J. Org. Chem. 2017, 82, 848–868; d) B. Hagen, J. H. M.
van Dijk, Q. Zhang, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codée,
Org. Lett. 2017, 19, 2514–2517.
[9]
a) R. U. Lemieux, K. B. Hendriks, R. V. Stick, K. James, J. Am. Chem.
Soc. 1975, 97, 4056–5062; b) D. Crich, Acc. Chem. Res. 2010, 43,
1144–1153
[10] a) D. Crich, S. Sun, J. Org. Chem. 1996, 61, 4506–4507; b) J. D. C.
Codée, R. E. J. N. Litjens, R. den Heeten, H. S. Overkleeft, J. H. van
Boom, G. A. van der Marel, Org. Lett. 2003, 5, 1519–1522.
[11] a) D. Magaud, R. Dolmazon, D. Anker, A. Doutheau, Y. L. Dory, P.
Deslongchamps, Org. Lett. 2000, 2, 2275–2277; b) A.-R. de Jong, B.
Hagen, V. van der Ark, H. S. Overkleeft, J. D. C. Codée, G. A. Van der
Marel, J. Org. Chem. 2012, 77, 108–125; c) Q. Zhang, E. R. van Rijssel,
This article is protected by copyright. All rights reserved.