10.1002/anie.202105355
Angewandte Chemie International Edition
RESEARCH ARTICLE
130, 2424; d) E. W. Werner, M. S. Sigman, J. Am. Chem. Soc. 2010,
132, 13981; e) C. Zheng, D. Wang, S. S. Stahl, J. Am. Chem. Soc.
2012, 134, 16496; f) Y. Izawa, C. Zheng, S. S. Stahl, Angew. Chem. Int.
Ed. 2013, 52, 3672; Angew. Chem. 2013, 125, 3760; g) F. Klotter, A.
Studer, Angew. Chem. Int. Ed. 2014, 53, 2473; Angew. Chem. 2014,
126, 2505; h) Y.-B. Zhou, Y.-Q. Wang, L.-C. Ning, Z.-C. Ding, W.-L.
Wang, C.-K. Ding, R.-H. Li, J.-J. Chen, X. Lu, Y.-J. Ding, Z.-P. Zhan, J.
Am. Chem. Soc. 2017, 139, 3966; i) Q. Yuan, M. S. Sigman, J. Am.
Chem. Soc. 2018, 140, 6527.
solution and in the solid state at room temperature (RT) as well
as in glassy matrices at 77 K (see Supporting Information for
details). As shown in Scheme 4 and in Figure 1, the absorption
and emission maxima in toluene (10-5 M) are centered at
around 345 nm and 400 nm, respectively. Surprisingly high ΦF
around 44% was observed in fluid toluene (Scheme 4). Notably,
this value further increased to roughly 75% at low temperature
(77 K), where also a slight blue-shift is observed. Contrastingly,
a significant red-shift of the photoluminescence (around 30 nm)
was observed in the solid state, if compared with fluid solutions,
which is attributed to an enhanced dielectric constant favoring
the charge-transfer character while dropping the ΦF to 20%,
13%, and 21%, respectively. Clearly, these compounds display
a bright and intense blue fluorescence both in solution and in the
solid state (Figure 1). Based on the obtained ΦF and values
(Tables S3-S4), we calculated the fluorescence (kF) and non-
radiative (knr) deactivation rate constants (Table S5). The
comparably high value of kF for the three species implies a
predominant π-πcharacter of the fluorescent S1 states. In
frozen matrices at 77 K and in apolar solvents at RT, the π-π
character is increased while boosting kr, whereas in the more
polar solid state the charge-transfer character is enhanced with
generally lower radiative and higher radiationless deactivation
rates. At 77 K, radiationless processes are suppressed due to
reduced rotovibrational degrees of freedom while providing the
intrinsically high fluorescence rate constant due to a maximized
π-π character in the absence of solvent stabilization of the
photoexcited states.
[3]
[4]
For selected examples on chelation-assisted oxidative Heck reactions,
see: a) J. H. Delcamp, A. P. Brucks, M. C. White, J. Am. Chem. Soc.
2008, 130, 11270; b) Y. Liu, D. Li, C.-M. Park, Angew. Chem. Int. Ed.
2011, 50, 7333; Angew. Chem. 2011, 123, 7471; c) H. Lv, H. Kang, B.
Zhou, X. Xue, K. M. Engle, D. Zhao, Nat. Commun. 2019, 10. 5025; d)
A. M. Romine, K. S. Yang, M. K. Karunananda, J. S. Chen, K. M. Engle,
ACS Catal. 2019, 9, 7626.
For selected examples on hydroarylations, see: a) L. Liao, M. S.
Sigman, J. Am. Chem. Soc. 2010, 132, 10209; b) K. M.-H. Lim, T.
Hayashi, J. Am. Chem. Soc. 2015, 137, 3201; c) Y. Huang,T. Hayashi,
J. Am. Chem. Soc. 2016, 138, 12340; d) K. M.-H. Lim, T. Hayashi, J.
Am. Chem. Soc. 2017, 139, 8122; e) L.-J. Xiao, L. Cheng, W.-M. Feng,
M.-L. Li, J.-H. Xie, Q.-L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 461;
Angew. Chem. 2018, 130, 470; f) Y.-G. Chen, B. Shuai, X.-T. Xu, Y.-Q.
Li, Q.-L. Yang, H. Qiu, K. Zhang, P. Fang, T.-S. Mei, J. Am. Chem. Soc.
2019, 141, 3395; g) J. S. Marcum, T. R. Taylor, S. J. Meek, Angew.
Chem. Int. Ed. 2020, 59, 14070; Angew. Chem. 2020, 132, 14174.
For selected examples on chelation-assisted hydroarylations, see: a) G.
C. Tsui, M. Lautens, Angew. Chem. Int. Ed. 2010, 49, 8938; Angew.
Chem. 2010, 122, 9122; b) H. Lv, L.-J. Xiao, D. Zhao, Q.-L. Zhou,
Chem. Sci. 2018, 9, 6839; c) R. Matsuura, T. C. Jankins, D. E. Hill, K. S.
Yang, G. M. Gallego, S. Yang, M. He, F. Wang, R. P. Marsters, I.
McAlpine, K. M. Engle, Chem. Sci. 2018, 9, 8363; d) T. Liu, Y. Yang, C.
Wang, Angew. Chem. Int. Ed. 2020, 59, 14256; Angew. Chem. 2020,
132, 14362; e) D. Wang, J. Dong, W. Fan, X.-A. Yuan, J. Han, J. Xie,
Angew. Chem. Int. Ed. 2020, 59, 8430; Angew. Chem. 2020, 132, 8508;
f) D.-M. Wang, W. Feng, Y. Wu, T. Liu, P. Wang, Angew. Chem. Int. Ed.
2020, 59, 20399; Angew. Chem. 2020, 132, 20579.
[5]
Conclusion
In summary, we have demonstrated the first example of
rhodium(III)-catalyzed dealkenylative arylation of alkenes with
arylboronic compounds, thereby providing an unconventional
access to bi(hetero)aryls with excellent chemo-selectivity. In
addition, this transformation was also amenable to 1,3-dienes. In
this method, C(aryl)–C(alkenyl) and C(alkenyl)–C(alkenyl) bonds
in various alkenes and 1,3-dienes can be cleaved via a
hydrometalation and followed by beta-carbon elimination
pathway for Suzuki-Miyaura reaction. Furthermore, a new class
of bright fluorophores was made accessible providing a blue
luminescence with lifetimes in the ns range and up to 75%
quantum yields.
[6]
For selected recent reviews on transition-metal catalyzed C−C bond
activation: a) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613;
b) H. Liu, M. Feng, X. Jiang, Chem. -Asian J. 2014, 9, 3360; c) L.
Souillart, N. Cramer, Chem. Rev. 2015, 115, 9410; d) M. Murakami, N.
Ishida, J. Am. Chem. Soc. 2016, 138, 13759; e) F. Song, T. Gou, B.-Q.
Wang, Z.-J. Shi, Chem. Soc. Rev. 2018, 47, 7078; f) C. T. To, K. S.
Chan, Eur. J. Org. Chem. 2019, 2019, 6581; g) Y. Xia, G. Dong, Nat.
Rev. Chem. 2020, 4, 600.
[7]
For selected examples on chelation-assisted transition-metal catalyzed
C−C bond activation: a) C.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999,
121, 880; b) N. Chatani, Y. Ie, F. Kakiuchi, S. Murai, J. Am. Chem. Soc.
1999, 121, 8645; c) A. M. Dreis, C. J. Douglas, J. Am. Chem. Soc.
2009, 131, 412; d) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J.
Shi, J. Am. Chem. Soc. 2011, 133, 15244; e) Z.-Q. Lei, H. Li, Y. Li, X.-
S. Zhang, K. Chen, X. Wang, J. Sun, Z.-J. Shi, Angew. Chem. Int. Ed.
2012, 51, 2690; Angew. Chem. 2012, 124, 2744; f) J. Wang, W. Chen,
S. Zuo, L. Liu, X. Zhang, J. Wang, Angew. Chem. Int. Ed. 2012, 51,
12334; Angew. Chem. 2012, 124, 12500; g) Z.-Q. Lei, F. Pan, H. Li, Y.
Li, X.-S. Zhang, K. Chen, X. Wang, Y.-X. Li, J. Sun, Z.-J. Shi, J. Am.
Chem. Soc. 2015, 137, 5012; h) Y. Xia, G. Lu, P. Liu, G. Dong, Nature
2016, 539, 546; i) Y. Xia, J. Wang, G. Dong, J. Am. Chem. Soc. 2018,
140, 5347; j) T.-T. Zhao, W.-H. Xu, Z.-J. Zheng, P.-F. Xu, H. Wei, J.
Am. Chem. Soc. 2018, 140, 586; k) H. Wang, I. Choi, T. Rogge, N.
Kaplaneris, L. Ackermann, Nat. Catal. 2018, 1, 993; l) S. Onodera, S.
Ishikawa, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc. 2018, 140, 9788; m)
J. Zhu, J. Wang, G. Dong, Nat. Chem. 2019, 11, 45; n) J. Zhu, P. Chen,
G. Lu, P. Liu, G. Dong, J. Am. Chem. Soc. 2019, 141, 18630; o) Y. Qiu,
A. Scheremetjew, L. Ackermann, J. Am. Chem. Soc. 2019, 141, 2731; p)
C. Fan, X.-Y. Lv, L.-J. Xiao, J.-H. Xie, Q.-L. Zhou, J. Am. Chem. Soc.
2019, 141, 2889.
Acknowledgements
This work was support by the Alexander von Humboldt
Foundation
(G.T.
and
I.M.)
and
the
Deutsche
Forschungsgemeinschaft (Leibniz Award and SFB 858 for F.G.
and INST 211/915-1 for C.A.S.).
Keywords: rhodium catalysis • dealkenylation arylation •
alkenes • C–C bond cleavage • organic fluorescent molecules
[2]
For selected examples on oxidative Heck reactions, see: a) E. J.
Farrington, J. M. Brown, C. F. J. Barnard, E. Rowsell, Angew. Chem.
Int. Ed. 2002, 41, 169; Angew. Chem. 2002, 114, 117; b) J. D. Crowley,
K. D. Hänni, A.-L. Lee, D. A. Leigh, J. Am. Chem. Soc. 2007, 129,
12092; c) J. Ruan, X. Li, O. Saidi, J. Xiao, J. Am. Chem. Soc. 2008,
[8]
S. W. Youn, B. S. Kim, A. R. Jagdale, J. Am. Chem. Soc. 2012, 134,
11308.
5
This article is protected by copyright. All rights reserved.