4512
M. Behrouzi-Fardmoghadam et al. / Bioorg. Med. Chem. 16 (2008) 4509–4515
Table 2. Spectral data of compounds 7–12a,b
Compound
IR (KBr); mmax
1H NMR (80 MHz, DMSO-d6) d (ppm)
MS (m/e, %)
7a
1629 (C@O), 1542 and 1342 cmÀ1 (NO2)
7.85 (d, 1H, H4-furan, J = 4.0 Hz), 7.35–
7.55(m, 5H, H3-furan and phenyl), 3.60–
3.80 (m, 8H, piperazine).
421 ([M++2], 7), 419 (M+, 18),
308 (10), 263 (28), 166 (24), 139
(100), 110 (50), 68 (40), 55 (60).
421 ([M++2], 4), 419 (M+, 10),
401 (43), 376 (25), 308 (100), 196
(43), 138 (20), 90 (50), 56 (57).
8a
1634 (C@O), 1511 and 1342 cmÀ1(NO2)
7.85 (d, 1H, H4-furan, J = 4.0 Hz), 7.43–
7.58 (m, 4H, phenyl), 7.4 (d, 1H, H3-
furan, J = 4.0 Hz), 3.65–3.75 (m, 8H,
piperazine).
9a
1634 (C@O), 1512, 1352 cmÀ1 (NO2)
7.85 (d, 1H, H4-furan, J = 4.0 Hz), 7.54
(s, 4H, phenyl), 7.42 (d, 1H, H3-furan,
J = 4.0 Hz), 3.69 (br s, 8H, piperazine).
7.86 (d, 1H, H4-furan, J = 4.0 Hz), 7.6–
7.8 (m, 1H, H5-thiophene), 7.41 (d, 1H,
H3- furan, J = 4.0 Hz), 7.45–7.55 (m, 1H,
H3-thiophene), 7.10–7.25 (m, 1H, H4-
thiophene), 3.57–4.0 (m, 8H, piperazine).
7.85 (d, 1H, H4-furan, J = 4.0 Hz), 7.40
(d, 2H, H3-furan, H3-thiophene,
421 ([M++2], 4), 419 (M+, 10),
376 (25), 307 (76), 373 (25), 196
(43), 139 (91), 91 (100), 56 (73).
391 (M+, 17), 280 (10), 166 (20),
111 (100).
10a
1608 (C@O), 1539 and 1352 cmÀ1 (NO2)
11a
12a
1602 (C@O), 1533 and 1356 cmÀ1 (NO2)
1607 (C@O), 1540, 1361 cmÀ1 (NO2)
426 ([M++2], 7), 424 (M+, 18),
262 (34), 237 (19), 164 (24), 145
(100), 143 (95), 81 (37), 55 (40).
J = 4.0 Hz), 7.19 (d, 1H, H4-thiophene,
J = 4.0 Hz), 3.57–4.0 (m, 8H, piperazine).
7.85 (d, 1H, H4-furan, J = 4.0 Hz), 7.40
(d, 1H, H3-thiophene, J = 4.0 Hz), 7.34
(d, 1H, H3-furan, J = 3.9 Hz), 7.29 (d,
1H, H4- thiophene, J = 3.9 Hz), 3.59–3.96
(m, 8H, piperazine).
471 ([M++2], 40), 469 (M+, 40),
390 (20), 281 (24), 264 (90), 239
(64), 187 (100), 167 (60), 80 (75),
54 (98).
7b
8b
9b
1634 (C@O), 1530, 1337 cmÀ1 (NO2)
1644 (C@O), 1536, 1347 cmÀ1 (NO2)
1634 (C@O), 1527, 1347 cmÀ1 (NO2)
8.17 (d, 1H, H4-thiophene, J = 4.0 Hz),
7.35–7.65 (m, 5H, H3-thiophene and
phenyl), 3.65–3.95 (m, 8H, piperazine).
8.18 (d, 1H, H4-thiophene, J = 4.2 Hz),
7.40–7.60 (m, 5H, H3-thiophene and
phenyl), 3.7–4.0 (m, 8H, piperazine).
8.12 (d, 1H, H4-thiophene, J = 4.2 Hz),
7.57 (d, 1H, H3-thiophene, J = 4.2 Hz),
7.51 (s, 4H, phenyl ), 3.66 (br s, 8H,
piperazine).
437 ([M++2], 7), 435 (M+, 18),
308 (13), 223 (18), 139 (100), 111
(56), 56 (40).
437 ([M++2], 5), 435 (M+, 13),
139 (100), 111 (50), 55 (48).
437 ([M++2], 7), 435 (M+, 10),
280 (18), 254 (25), 182 (25), 139
(100), 111 (50), 56 (46).
10b
11b
12b
1608 (C@O), 1521, 1342 cmÀ1 (NO2)
1605 (C@O), 1522, 1368 cmÀ1 (NO2)
1609 (C@O), 1519, 1346 cmÀ1 (NO2)
8.13 (d, 1H, H4-nitrothiophene,
J = 4.2 Hz), 7.7–7.9 (m, 1H, H5-
407 (M+, 10), 279 (15), 152 (18),
111 (60), 109 (100).
thiophene, J = 4.2 Hz), 7.65 (d, 1H, H3-
nitrothiophene, J = 4.2 Hz), 7.45–7.6 (m,
1H, H3-thiophene), 7.15–7.25 (m, 1H, H4-
thiophene), 3.52–4.0 (m, 8H, piperazine).
8.15 (d, 1H, H4-nitrothiophene,
443 ([M++2], 4), 441 (M+, 10),
280 (15), 240 (15), 181 (22), 144
(100),69 (18), 56 (51).
J = 4.2 Hz), 7.59 (d, 1H, H3-
nitrothiophene, J = 4.2 Hz), 7.39 (d, 1H,
H3-thiophene, J = 4.0 Hz), 7.19 (d, 1H,
H4-thiophene, J = 4.0 Hz), 3.52–4.05 (m,
8H, piperazine).
8.13 (d, 1H, H4-nitrothiophene,
J = 4.2 Hz), 7.61 (d, 1H, H3-
488 ([M++2], 15), 486 (M+, 16),
281 (37), 278 (45), 187 (100), 183
(65), 162 (24), 125 (40), 101 (76),
80 (87), 52 (98).
nitrothiophene, J = 4.2 Hz), 7.35 (d, 1H,
H3-thiophene, J = 4.0 Hz), 7.27 (d, 1H,
H4-thiophene, J = 4.0 Hz), 3.50–3.96 (m,
8H, piperazine).
The results obtained are given in Table 3. The calculated
values of logP for derivatives of nitrothiophene were
about 0.35 higher than for the corresponding compounds
with a nitrofuran moiety. It could be assumed that the in-
crease in lipophilicity (log P) of the compounds within the
series 6–12b results in the decrease of anti-leishmanial
activity. On the other hand, the observed differences in
anti-leishmanial activities of nitrofurans and nitrothioph-
enes may be due to the reduction potential of the single-
electron transfer ArNO2/ArNOꢀ2À. Nitroheterocylic com-
pounds are generally believed to exert their cytotoxic ef-
fects only after activation by single-electron reduction
of their corresponding nitro anion radicals.20–22 Under
aerobic conditions, the nitro radical anion reacts with
oxygen to form superoxide anion and hydroxyl radical.
The resulting oxygen-derived free radicals would damage
the enzyme, DNA or important structures in the sur-
rounding cell, and result in a cytotoxic action. Under
anaerobic conditions, the radical anion can be trans-
formed into the corresponding nitroso-derivative. This