InBr3-Promoted DiVergent Approach
SCHEME 1. Representative Synthesis of the Substrates
framework widely found in naturally occurring products,
biologically active substances, and clinical drugs, also has
attracted considerable interest.12 Therefore, a number of reac-
tions involving the Conrad-Limpach-Knorr synthesis,13 the
Skraup synthesis,14 and the Friedla¨nder synthesis15 have been
developed for the preparation of this skeleton. Recently, the
development of a modified Friedla¨nder-type reaction using a
Lewis acid has proven promising.16 During the ongoing
exploration of the novel synthetic process of nitrogen-containing
heterocycles using an indium catalyst,17 we also found that the
structure of a terminal substituent on the triple bond bonded to
an o-alkynylaniline directly has an effect on the selectivity of
TABLE 1. Examination of a Catalyst
run
Lewis acid
time (h)
yield (%)a
(5) Cu: (a) Hiroya, K.; Itoh, S.; Sakamoto, T. Tetrahedron 2005, 61, 10958.
(b) Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126. (c) Cacchi,
S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843. (d) Hiroya, K.; Itoh, S.;
Ozawa, M.; Kanamori, Y.; Sakamoto, T. Tetrahedron Lett. 2002, 43, 1277. (e)
Ezquerra, J.; Pedregal, C.; Lamas, C.; Barluenga, J.; Pe´rez, M.; Garc´ıa-Mart´ın,
M. A.; Gonza´lez, J. M. J. Org. Chem. 1996, 61, 5804. Au: (f) Ambrogio, I.;
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2007, 1775. (g) Zhang,
Y.; Donahue, J. P.; Li, C. J. Org. Lett. 2007, 9, 627. Ir: (h) Li, X.; Chianese,
A. R.; Vogel, T.; Crabtree, R. H. Org. Lett. 2005, 7, 5437. Hg: (I) Kurisaki, T.;
Naniwa, T.; Yamamoto, H.; Imagawa, H.; Nishizawa, M. Tetrahedron Lett. 2007,
48, 1871. Mo: (j) McDonald, F. E.; Chatterjee, A. K. Tetrahedron Lett. 1997,
38, 7687. Pt: (k) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc.
2004, 126, 10546. Rh: (l) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed.
2007, 46, 2074.
1
2
3
4
5
6
7
8
9
BF3•OEt2
B(C6F5)3
AlCl3
Cu(OTf)2
PdCl2(PPh3)2
InBr3
InCl3
InI3
InBr3 (1 equiv)
none
12
12
12
12
12
1
3
3
0.1
24
(22)
(29)
(31)
9
75
(95)
90
6
98
18
10
a NMR yield (isolated yield).
(6) Sakamoto, T.; Kondo, Y.; Iwashita, S.; Yamanaka, H. Chem. Pharm.
Bull. 1987, 35, 1823.
(7) (a) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3307.
(b) Dai, W.-M.; Sun, L.-P.; Guo, D.-S. Tetrahedron Lett. 2002, 43, 7699.
(8) Sun, L.-P.; Huang, X.-H.; Dai, W.-M. Tetrahedron 2004, 60, 10983.
(9) (a) Yin, Y.; Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731.
(b) Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E. Angew. Chem., Int. Ed.
2006, 45, 944.
the subsequent reaction path, resulting in the selective prepara-
tion of two quite different heterocycles.18 Namely, a terminal
group, such as an alkyl and an aryl group, predominately
produces the corresponding indole derivatives via the indium-
catalyzed intramolecular cyclization of the alkynylaniline. In
contrast, the reaction using the substrate with a trimethylsilyl
group or with no substituent group on the terminal triple bond
exclusively produced the multifunctionalized quinoline deriva-
tives through indium-promoted intermolecular dimerization of
the ethynylaniline derivative. Thus, the focus of our group’s
moved to the scope and limitations of both intramolecular
cyclization and intermolecular dimerization from the original
substrate. This paper details the results of a reinvestigation of
indium-promoted reactions.
(10) (a) Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. (b) Amjad,
M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539. (c) Yue, D.; Larock, R. C.
Org. Lett. 2004, 6, 1037.
(11) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzaˆlez, J. M. Angew. Chem.,
Int. Ed. 2003, 42, 2406.
(12) Erian, A. W. Chem. ReV. 1993, 93, 1991. and references therein.
(13) (a) Curran, A. C. W. J. Chem. Soc., Perkin Trans. 1 1976, 975. (b)
Misani, F.; Bogert, M. T. J. Org. Chem. 1945, 10, 347.
(14) (a) Sakai, N.; Aoki, D.; Hamajima, T.; Konakahara, T. Tetrahedron
Lett. 2006, 47, 1261. (b) Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006,
71, 1668. (c) Kobayashi, K.; Takanohashi, A.; Watanabe, S.; Morikawa, O.;
Konishi, H. Tetrahedron Lett. 2000, 41, 7657. (d) Robinson, J. M.; Brent, L. W.;
Chau, C.; Floyd, K. A.; Gillham, S. L.; McMahan, T. L.; Magda, D. J.; Motycka,
T. J.; Pack, M. J.; Roberts, A. L.; Seally, L. A.; Simpson, S. L.; Smith, R. R.;
Zalesny, K. N. J. Org. Chem. 1992, 57, 7352. (e) Case, F.; Buck, C. J. Org.
Chem. 1956, 21, 697.
Results and Discussion
(15) (a) Palimkar, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan,
K. V. J. Org. Chem. 2003, 68, 9371. (b) Dormer, P. G.; Eng, K. K.; Farr, R. N.;
Humphrey, G. R.; McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P.
J. Org. Chem. 2003, 68, 467. (c) Gladiali, S.; Chelucci, G.; Mudadu, M. S.;
Gastaut, M. A.; Thummel, R. P. J. Org. Chem. 2001, 66, 400. (d) Breitmaier,
E.; Gassenmann, S.; Bayer, E. Tetrahedron 1970, 26, 5907. (e) Breitmaier, E.;
Bayer, E. Tetrahedron Lett. 1970, 11, 3291. (f) Breitmaier, E.; Bayer, E. Angew.
Chem., Int. Ed. 1969, 8, 765. (g) Fehnel, E. A. J. Org. Chem. 1966, 31, 2899.
(16) For selected papers on modified Friedla¨nder reactions using a metal
catalyst, see: (a) Mart´ınez, R.; Ramo´n, D. J.; Yus, M. Eur. J. Org. Chem. 2007,
1599. (b) Wu, J.; Xia, H.-G.; Gao, K. Org. Biomol. Chem. 2006, 4, 126. (c)
Wu, J.; Zhang, L.; Diao, T.-N. Synlett 2005, 2653. (d) Yadav, J. S.; Reddy,
B. V. S.; Premalatha, K. Synlett 2004, 963. (e) Arcadi, A.; Chiarini, M.; Giuseppe,
S. D.; Marinelli, F. Synlett 2003, 203.
In-Catalyzed Intramolecular Cyclization Leading to
Indole Derivatives. Initially, a series of 2-ethynylaniline
derivatives 1a-n as a reaction substrate were prepared via a
Sonogashira-coupling reaction between 2-iodoaniline derivatives
and several types of terminal alkynes (Scheme 1).19
To confirm the highly catalytic activity of an indium salt for
the intramolecular cyclization of 2-phenylethynylaniline (1a),
we then reinvestigated several types of Lewis acid for optimal
conditions. For example, when the reaction using a catalytic
amount of typical Lewis acids, such as BF3•OEt2, B(C6F5)3, and
AlCl3, was examined, the desired cyclization produced 2-phe-
nylindole (2a), though the yield was rather low (Table 1, runs
1-3). Cu(OTf)2, which promoted a similar cyclization of an
N-protected ethynylaniline,20 did not show a catalytic effect to
(17) For selected reviews and papers on the reaction using indium, see: (a)
Auge´, J.; Lubin-Germain, N.; Uziel, J. Synthesis 2007, 1739. (b) Loh, T.-P.;
Chua, G.-L. Chem. Commun. 2006, 2739. (c) Podlech, J.; Maier, T. C. Synthesis
2003, 633. (d) Chauhan, K. K.; Frost, C. G. J. Chem. Soc., Perkin Trans. 1
2000, 3015. (e) Ranu, B. C. Eur. J. Org. Chem. 2000, 2347. (f) Kawata, A.;
Takata, K.; Kuninobu, Y.; Takai, K. Angew. Chem., Int. Ed. 2007, 46, 7793. (g)
Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007,
72, 4462. (h) Sakai, N.; Hirasawa, M.; Konakahara, T. Tetrahedron Lett. 2005,
46, 6407. (i) Nakamura, M.; Endo, K.; Nakamura, E. J. Am. Chem. Soc. 2003,
125, 13002. (j) Yadav, J. S.; Reddy, B. V. S.; Raju, A. K.; Rao, C. V. Tetrahedron
Lett. 2002, 43, 5437. (k) Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi,
A. Synthesis 2002, 1110. (l) Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba,
A. J. Org. Chem. 2001, 66, 7741. (m) Loh, T.-P.; Wei, L.-L. Tetrahedron Lett.
1998, 39, 323. (n) Yasuda, M.; Miyai, T.; Shibata, I.; Baba, A.; Nomura, R.;
Matsuda, H. Tetrahedron Lett. 1995, 36, 9497. (o) Marshall, J. A.; Hinkle, K. W.
J. Org. Chem. 1995, 60, 1920.
(18) (a) Sakai, N.; Annaka, K.; Konakahara, T. J. Org. Chem. 2006, 71,
3653. (b) Sakai, N.; Annaka, K.; Konakahara, T. Tetrahedron Lett. 2006, 47,
631. (c) Sakai, N.; Annaka, K.; Konakahara, T. Org. Lett. 2004, 6, 1527.
(19) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
446.
(20) For a copper-promoted reaction of a similar ethynylaniline derivative
resulted in the formation of an indole derivative, see: Dai, W.-M.; Guo, D.-S.;
Sun, L.-P. Tetrahedron Lett. 2001, 42, 5275.
J. Org. Chem. Vol. 73, No. 11, 2008 4161