Brief Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 2 919
In conclusion, linking any of several reversal-agent-like
moieties to a 4-amino-7-chloroquinoline yields good activity
against CQS or CQR P. falciparum malarias so that there is
considerable flexibility available to the drug designer.
(8) Martin, R. E.; Kirk, K. The malaria parasite’s chloroquine resis-
tance transporter is a member of the drug/metabolite transporter
superfamily. Mol. Biol. Evol. 2004, 21, 1938–1949.
(9) Ginsburg, H. Should chloroquine be laid to rest? Acta. Trop. 2005,
96, 16–23.
(10) Martin, S. K.; Oduola, A. M.; Milhous, W. K. Reversal of
chloroquine resistance in Plasmodium falciparum by verapamil.
Science 1987, 235, 899–901.
(11) Krogstad, D. J.; Gluzman, I. Y.; Kyle, D. E.; Oduola, A. M.;
Martin, S. K.; Milhous, W. K.; Schlesinger, P. H. Efflux of
chloroquine from Plasmodium falciparum: mechanism of chloro-
quine resistance. Science 1987, 238, 1283–1285.
(12) van Schalkwyk, D. A.; Walden, J. C.; Smith, P. J. Reversal of chlor-
oquine resistance in Plasmodium falciparum using combinations of
chemosensitizers. Antimicrob. Agents Chemother. 2001, 45, 3171–3174.
(13) Millet, J.; Torrentino-Madamet, M.; Alibert, S.; Rogier, C.; San-
telli-Rouvier, C.; Mosnier, J.; Baret, E.; Barbe, J.; Parzy, D.;
Pradines, B. Dihydroethanoanthracene derivatives as in vitro
malarial chloroquine resistance reversal agents. Antimicrob. Agents
Chemother. 2004, 48, 2753–2756.
(14) Bhattacharjee, A. K.; Kyle, D. E.; Vennerstrom, J. L.; Milhous,
W. K. A 3D QSAR pharmacophore model and quantum chemical
structure-activity analysis of chloroquine(CQ)-resistance rever-
sal. J. Chem. Inf. Comput. Sci. 2002, 42, 1212–1220.
Acknowledgment. The authors thank the following for
supporting this research: the Medical Research Foundation
of Oregon (Grant 0530), the National Institutes of Health
(Grants AI067837 and AI072923) to DHP, and a grant from
the Murdock Charitable Trust for the NMR instruments.
Supporting Information Available: General experimental
methods; 1H and 13C NMR data. This material is available free
References
(1) Greenwood, B. M.; Bojang, K.; Whitty, C. J.; Targett, G. A.
Malaria. Lancet 2005, 365, 1487–1498.
(2) Yearick, K.; Ekoue-Kovi, K.; Iwaniuk, D. P.; Natarajan, J. K.;
Alumasa, J.; de Dios, A. C.; Roepe, P. D.; Wolf, C. Overcoming
drug resistance to heme-targeted antimalarials by systematic side
chain variation of 7-chloro-4-aminoquinolines. J. Med. Chem.
2008, 51, 1995–1998.
(15) Burgess, S. J.; Selzer, A.; Kelly, J. X.; Smilkstein, M. J.; Riscoe,
M. K.; Peyton, D. H. A chloroquine-like molecule designed to
reverse resistance in Plasmodium falciparum. J. Med. Chem. 2006,
49, 5623–5625.
(3) Ekoue-Kovi, K.; Yearick, K.; Iwaniuk, D. P.; Natarajan, J. K.;
Alumasa, J.; de Dios, A. C.; Roepe, P. D.; Wolf, C. Synthesis and
antimalarial activity of new 4-amino-7-chloroquinolyl amides,
sulfonamides, ureas and thioureas. Bioorg. Med. Chem. 2009, 17,
270–283.
(16) Vennerstrom, J. L.; Ellis, W. Y.; Ager, A. L., Jr.; Andersen, S. L.;
Gerena, L.; Milhous, W. K. Bisquinolines. 1. N,N-Bis(7-chloro-
quinolin-4-yl)alkanediamines with potential against chloroquine-
resistant malaria. J. Med. Chem. 1992, 35, 2129–2134.
(17) Molyneaux, C. A.; Krugliak, M.; Ginsburg, H.; Chibale, K.
Arylpiperazines displaying preferential potency against chloro-
quine-resistant strains of the malaria parasite Plasmodium falcipar-
um. Biochem. Pharmacol. 2005, 71, 61–68.
(18) Warhurst, D. C.; Craig, J. C.; Adagu, I. S.; Guy, R. K.; Madrid,
P. B.; Fivelman, Q. L. Activity of piperaquine and other
4-aminoquinoline antiplasmodial drugs against chloroquine-sensi-
tive and resistant blood-stages of Plasmodium falciparum. Role
of beta-haematin inhibition and drug concentration in vacuolar
water- and lipid-phases. Biochem. Pharmacol. 2007, 73, 1910–1926.
(19) October, N.; Watermeyer, N. D.; Yardley, V.; Egan, T. J.; Ncokazi,
K.; Chibale, K. Reversed chloroquines based on the 3,4-dihydro-
pyrimidin-2(1H)-one scaffold: synthesis and evaluation for anti-
malarial, beta-haematin inhibition, and cytotoxic activity.
ChemMedChem 2008, 3, 1649–1653.
(4) Ashley, E. A.; White, N. J. Artemisinin-based combinations. Curr.
Opin. Infect. Dis. 2005, 18, 531–536.
(5) Schellenberg, D.; Abdulla, S.; Roper, C. Current issues for anti-
malarial drugs to control P. falciparum malaria. Curr. Mol. Med.
2006, 6, 253–260.
(6) Zhang, H.; Paguio, M.; Roepe, P. D. The antimalarial drug
resistance protein Plasmodium falciparum chloroquine resis-
tance transporter binds chloroquine. Biochemistry 2004, 43, 8290–
8296.
(7) Bennett, T. N.; Kosar, A. D.; Ursos, L. M.; Dzekunov, S.; Singh
Sidhu, A. B.; Fidock, D. A.; Roepe, P. D. Drug resistance-
associated pfCRT mutations confer decreased Plasmodium falci-
parum digestive vacuolar pH. Mol. Biochem. Parasitol. 2004, 133,
99–114.