2750
A. Cutivet et al. / Tetrahedron Letters 49 (2008) 2748–2751
As in the tetrazine series, the dihydro-1,2,4,5-tetrazine
hydrotetrazine precursors are more prone to substitution
than their tetrazine counterparts. The method was also
extended to other amines, thus highlighting the versatility
of this reaction.
bearing dimethylpyrazole as the leaving group was more
rapidly substituted by methylamine than the corresponding
bis(methylsulfanyl) derivative. However, chromatographic
removal of the dimethylpyrazole formed in the substitution
process was difficult, thus decreasing the yields of pure
3,6-bis(methylamino)-1,2,4,5-tetrazine 4 (entries 6 and 7).
Therefore, even if disubstitution required longer times,
3,6-bis(methylsulfanyl)-1,2-dihydro-1,2,4,5-tetrazine 2a was
our best choice of precursor since the by-product metha-
nethiol was pumped off with the solvent during work-up.
The isolated yield was 70%, a satisfying result considering
that the up-to-now required oxidation step was avoided
(entry 4).37
References and notes
1. (a) Saracoglu, N. Tetrahedron 2007, 63, 4199–4236; (b) Neunhoeffer,
H. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees,
C. W., Eds.; Pergamon: Oxford, 1984; Vol. 3; (c) Sauer, J. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 6.
2. Hamasaki, A.; Ducray, R.; Boger, D. L. J. Org. Chem. 2006, 71, 185–
193.
3. Soenen, D. R.; Zimpleman, J. M.; Boger, D. L. J. Org. Chem. 2003,
68, 3593–3598.
Interestingly, using liquefied gaseous methylamine with
our optimal conditions only resulted in a 22% yield due
to low conversion (mono- and disubstituted products were
formed in nearly equal amounts, entry 5).
4. Wan, Z. K.; Woo, G. H. C.; Snyder, J. K. Tetrahedron 2001, 57,
5497–5507.
´
´
5. Kotschy, A.; Novak, Z.; Vincze, Z.; Smith, D. M.; Hajos, G.
Tetrahedron Lett. 1999, 40, 6313–6316.
6. Seitz, G.; Overheu, W. Arch. Pharm. 1977, 310, 936–938.
7. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. Org. Lett. 2004, 6, 2889–
2891.
8. Talawar, M. B.; Sivabalan, R.; Senthilkumar, N.; Prabhu, G.;
Asthana, S. N. J. Hazard. Mater. 2004, 113, 11–25.
9. Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D.
Thermochim. Acta 2002, 384, 187–204.
10. Oxley, J. C.; Smith, J. L.; Chen, H. Thermochim. Acta 2002, 384, 91–
99.
11. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem., Int. Ed.
2000, 39, 1791–1793.
The substitution reaction on dihydro-1,2,4,5-tetrazine
2a was extended to other common amines (Scheme 2, Table
2).38 Ethylamine was as effective as methylamine and the
monosubstitution product was not detected when the reac-
tion was conducted at 50 °C. The expected disubstitution
product 6a was obtained in 89% yield. Surprisingly, the
other primary amine benzylamine reacted poorly. Even at
70 °C, only 17% of 3,6-bis(benzylamino)-1,2,4,5-tetrazine
6b was isolated along with 77% of the monosubstituted
product 5b. However, a secondary amine, pyrrolidine,
was also shown to give the corresponding disubstituted
product 6c in satisfactory yield (52%). The monosubsti-
tuted compound 5c was also observed (15% yield).
12. Kotone, A.; Hoda, M. (Sakai Chem. Int. Co. Ltd) Jpn. Pat. 24002,
1971.
13. Tsuda, S.; Manabe, Y.; Tsuji, K. (Sumitomo Chem. Co. Ltd) Jpn.
Pat. 107254, 1988.
`
´
14. Audebert, P.; Miomandre, F.; Clavier, G.; Vernieres, M.-C.; Badre,
´
S.; Meallet-Renault, R. Chem. Eur. J. 2005, 11, 5667–5673.
15. Guckel, F.; Maki, A. H.; Neugebauer, F. A.; Schweitzer, D.; Vogler,
¨
H. Chem. Phys. 1992, 164, 217–227.
16. Audebert, P.; Sadki, S.; Miomandre, F.; Clavier, G.; Vernieres, M.-
C.; Saoud, M.; Hapiot, P. New. J. Chem. 2004, 28, 387–392.
17. Hu, W.-X.; Rao, G.-W.; Sun, Y.-Q. Bioorg. Med. Chem. Lett. 2004,
14, 1177–1181.
18. Rao, G.-W.; Hu, W.-X. Bioorg. Med. Chem. Lett. 2005, 15, 3174–
3176.
In conclusion, we have disclosed a convenient one step
methylamination of dihydro-1,2,4,5-tetrazines leading to
methylamino-substituted 1,2,4,5-tetrazines. This process
avoids both the oxidation step to obtain the usual tetrazine
precursor and the use of gaseous methylamine, thus
providing a practical synthesis of 3,6-bis(methylamino)-
1,2,4,5-tetrazine 4. A comparative study revealed that di-
`
19. Boger, D. L.; Zhang, M. J. J. Am. Chem. Soc. 1991, 113, 4230–4234.
20. Coburn, M. D.; Buntain, G. A.; Harris, B. W.; Hiskey, M. A.; Lee,
K.-Y.; Ott, O. G. J. Heterocycl. Chem. 1991, 28, 2049–2050.
R' R''
R' R''
SMe
N
N
21. Fisher, H.; Muller, T.; Umminger, I.; Neugebauer, F. A. J. Chem.
¨
R'R''NH / MeCN
50 or 70 °C / 4 d
N
N
NH
N
N
N
N
N
N
N
N
Soc., Perkin. Trans. 2 1988, 413–421.
22. Gleiter, R.; Schehlmann, V.; Spanget-Larsen, J. J. Org. Chem. 1988,
53, 5756–5762.
+
NH
SMe
N
SMe
R' R''
23. Gong, Y.-H.; Audebert, P.; Tang, J.; Miomandre, F.; Clavier, G.;
2a
6a-c
5a-c
´
Badre, S.; Meallet-Renault, R.; Marrot, J. J. Electroanal. Chem. 2006,
592, 147–152.
Scheme 2. Synthesis of (di)alkylamino-substituted 1,2,4,5-tetrazines.
24. Latosh, N. I.; Rusinov, G. L.; Ganebnykh, I. I.; Chupakhin, O. N.
Russ. J. Org. Chem. 1999, 35, 1363–1371.
25. Novak, Z.; Bostai, B.; Csekei, M.; Lorincz, K.; Kotschy, A.
Heterocycles 2003, 60, 2653–2668.
26. Rusinov, G. L.; Latosh, N. I.; Ganebnykh, I. I.; Ishmetova, R. I.;
Ignatenko, N. K.; Chupakhin, O. N. Russ. J. Org. Chem. 2006, 42,
757–765.
Table 2
Substitution of 2a with various amines: conditions and results
R0
R00
Temperature Monosubstitution Disubstitution
(°C)
product (isolated product (isolated
27. Schirmer, U.; Wuerzer, B.; Meyer, N.; Neugebauer, F. A.; Fisher, H.
DE Patent 3,508,214, 1986; Chem. Abstr. 1987, 106, 45718.
28. Sandstro¨m, J. J. Acta Chem. Scand. 1961, 15, 1575–1578.
29. Butler, R. N.; Scott, F. L.; Scott, R. D. J. Chem. Soc. 1970, 2510–
2512.
yield)
yield)
H
H
Et
Bn
50
70
50
—
5b (77%)
5c (15%)
6a (89%)
6b (17%)
6c (52%)
–(CH2)4–