Angewandte
Chemie
In summary, we have detailed a new series of furan-
containing teraryl cyclophene derivatives 1 which exhibit
unusually large Stokes shifts and NLO properties. These
cyclophenes 1 have neither particularly strong electron-
donating moieties nor electron-withdrawing groups and
have relatively low polarity. Yet they exhibit exceptionally
high mb values, which are even comparable with that of the
highly polar compound 9. Structurally, the strained cyclo-
phenes 1 furnish a unique feature that dictates these unusual
photophysical properties: strain results in the p systems of the
teraryl system and the bridging double bond being twisted.
Such a twisted system may thus induce significant enhance-
ment in hyperpolarizability.[8] The five-membered heteroar-
omatic rings in 1 may not only serve as electron donors, but
may also accommodate the appropriate geometry to enable
the interactions to occur between the oligoaryl systems and
the double bond that lead to unusual photophysical and NLO
properties.
Figure 2. Contour plots of the frontier molecular orbitals obtained by
DFT calculations at the B3LYP/6-31G** level (upper: LUMO, lower:
HOMO) of 1a (left) and 2 (right). Butyl substituents and hydrogen
atoms have been omitted for clarity.
Received: August 31, 2006
Revised: January 12, 2006
Keywords: cyclophanes · density functional calculations ·
.
hyperpolarizability · nonlinear optics · pi interactions
[1] a) Nonlinear Optics of Organic Molecules and Polymers (Eds.:
H. S. Nalwa, S. Miyata), CRC, Boca Raton, FL, 1997; b) G. D. L.
Torre, P. Vµzquez, F. Agulló-López, T. Torres, Chem.Rev. 2004,
104, 3723 – 3750; c) J. A. Delaire, K. Nakatani, Chem.Rev. 2000,
100, 1817 – 1846; d) D. R. Kanis, M. A. Ratner, T. J. Marks,
Chem.Rev. 1994, 94, 195 – 242; e) S. Marder, Chem.Commun.
2006, 131, 131 – 134; f) M. Ahlheim, M. Barzoukas, P. V. Bed-
worth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder,
J. W. Perry, C. Runser, M. Staehelin, B. Zysset, Science 1996, 271,
335 – 337.
[2] a) G. P. Bartholomew, I. Ledoux, S. Mukamel, G. C. Bazan, J.
Zyss, J.Am.Chem.Soc. 2002, 124, 13480 – 13485; b) J. Zyss, I.
Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P. Bartholo-
mew, G. C. Bazan, J.Am.Chem.Soc. 2000, 122, 11956 – 11962.
Figure 3. Plot of the mb values against the dihedral angle w for 1a–f.
[3] a) H. Blaschke, V. Boekelheide, J.Am.Chem.Soc.
1967, 89,
2747 – 2748; b) R. H. Mitchell, V. Boekelheide, J.Am.Chem.
Soc. 1974, 96, 1547 – 1557; c) for a review, see: R. H. Mitchell,
Eur.J.Org.Chem. 1999, 2695 – 2703.
increases from three to four methylene groups. Such a twisted
p system may account for the unusually high mb values for the
cyclophenes 1.[8] As the length of the tethering chain
increases, both the dihedral angles w and the mb values
decrease significantly. Moreover, as shown in Table 1, the
dihedral angles c between the plane of the furan ring and the
plane of the neighboring benzene ring in 1a–e are around
14–21o. The nonplanarity of the teraryl systems may also
enhance the hyperpolarizability of cyclophenes 1. On the
other hand, the teraryl moiety in 1 f is almost planar (c = 18).
It is well documented that L-shaped C2v-symmetric
molecules with two donors and one acceptor exhibit
enhanced second-order NLO properties.[13] The criterion for
such an enhancement would require little interaction between
the donor moieties.[13] As mentioned earlier, any interaction
between the two teraryl chromophores in 1a or 2 would be
negligibly weak, if any.[5] Cyclophenes 1 can thus be consid-
ered as L-shaped molecules with the furan or thiophene rings
as the donors and a double bond as the acceptor.
[4] a) E. Vogel, N. Jux, J. Dörr, T. Pelster, T. Berg, H.-S. Böhm, F.
Behrens, J. Lex, D. Bremm, G. Hohlneicher, Angew.Chem.Int.
Ed. 2000, 39, 1101 – 1105; b) G. Märkl, H. Sauer, P. Kreitmeier,
T. Burgemeister, F. Kastner, G. Adolin, H. Nöth, K. Polborn,
Angew.Chem. 1994, 106, 1211 – 1213; Angew.Chem.Int.Ed.
Engl. 1994, 33, 1151 – 1153; c) E. Vogel, M. Sticker, P. Röhrig, H.
Schmickler, H. Schmickler, J. Lex, O. Ermer, Angew.Chem.
1988, 100, 450 – 453; Angew.Chem.Int.Ed.Engl. 1988, 27, 411 –
414; d) J. L. Sessler, M. Cyr, A. K. Burrel, Tetrahedron 1992, 48,
9661 – 9672; e) Z. Hu, J. L. Atwood, M. P. Cava, J.Org.Chem.
1994, 59, 8071 – 8075; f) Modern Cyclophane Chemistry (Eds.: R.
Gleiter, H. Hopf), Wiley-VCH, Weinheim, 2004.
[5] J.-C. Tseng, S.-L. Huang, C.-L. Lin, H.-C. Lin, B.-Y. Jin, C.-Y.
Chen, J.-K. Yu, P.-T. Chou. T.-Y. Luh, Org.Lett. 2003, 5, 4381 –
4384.
[6] a) S. P. Karna, Y. Zhang, M. Samoc, P. N. Prasad, B. A. Rein-
hardt, A. G. Dillard, J.Chem.Phys. 1993, 99, 9984 – 9993; b) H.
Pan, X. Gao, Y. Zhang, P. N. Prasad, B. A. Reinhardt, R.
Kannan, Chem.Mater. 1995, 7, 816 – 821; c) P. R. Varanasi,
A. K.-Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri, A. Rathna,
Angew. Chem. Int. Ed. 2007, 46, 897 –900
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
899