2808
W. Li et al. / Tetrahedron Letters 49 (2008) 2804–2809
Table 4
´ ´
Gilles Quelever and Dr. Jessica Blanc for revising the
Antiviral activity of bitriazolyl acyclonucleosides against TMV
English manuscript.
Compound Anti-TMVa activity
(%)
Compound Anti-TMVa activity
(%)
Supplementary data
2a
2b
33
49
16
4
1
4
3a
3b
3c
3d
3e
3f
34
0
0
21
42
29
0
6
1
Analytical data, H NMR and 13C NMR spectra of all
2c
3d
the new compounds described. Supplementary data associ-
ated with this article can be found, in the online version, at
22 11
2
2
4
2e
36
47
10
21
6
15
0
0
7
3
1
4
5
5
2f
2g
3g
3h
3i
2h
2i
27 13
References and notes
46
42
14
0
21
34
17
4
8
7
2j
3j
1. Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.; Witkowski,
J. T.; Robins, R. K. Science 1972, 177, 705–706.
2. De Clercq, E. Nature Rev. Drug Discovery 2002, 1, 13–25.
3. Al-Soud, Y. A.; Al-Dweri, M. N.; Al-Masoudi, N. A. IL FARMACO
2004, 59, 775–783.
4. Wan, J. Q.; Zhu, R. Z.; Xia, Y.; Qu, F. Q.; Wu, Q. Y.; Yang, G. F.;
Neyts, J.; Peng, L. Tetrahedron Lett. 2006, 47, 6727–6731.
5. Zhu, R. Z.; Qu, F. Q.; Quelever, G.; Peng, L. Tetrahedron Lett. 2007,
2a0
3a0
3b0
3c0
3d0
3e0
2b0
2c0
0
18
6
7
2
5
2d0
6
3
8
2e0
Ribavirin
49
a
Antiviral inhibition percentage (%) calculated by comparing the
average numbers of the viral inflammations on the two half of leaves with
and without treating of the active compounds.7,8,21
´ ´
48, 2389–2393.
6. Xia, Y.; Qu, F. Q.; Li, W.; Wu, Q. Y.; Peng, L. Heterocycles 2005, 65,
345–352.
7. Xia, Y.; Fan, Z. J.; Yao, J. H.; Liao, Q.; Li, W.; Qu, F. Q.; Peng, L.
Bioorg. Med. Chem. Lett. 2006, 16, 2693–2698.
8. Xia, Y.; Li, W.; Qu, F. Q.; Fan, Z. J.; Liu, X. F.; Berro, C.; Rauzy, E.;
Peng, L. Org. Biomol. Chem. 2007, 5, 1695–1701.
the synthesis of bitriazolyl ribonucleosides:8 the electron-
deficient nature of the azido component in the triazole ring
of 5-azidotriazole acyclonucleoside and steric congestion
make azide reduction easier to perform than Huisgen
cycloaddition. Like the previously synthesized bitriazolyl
compounds A and B, some of the newly synthesized bitri-
azolyl acyclonucleosides C showed anti-TMV activity. This
finding further confirms that the bitriazolyl motif is
involved in anti-TMV activity. We are currently studying
structure/activity relationships in this family of compounds
and screening bitriazolyl leads against other viruses.
9. (a) Schaeffer, H. J.; Beauchamp, L.; De Miranda, P.; Elion, G. B.;
Bauer, D. J.; Collins, P. Nature 1978, 272, 583–585; (b) Elion, G. B.;
Furman, P. A.; Fyfe, J. A.; De Miranda, P.; Beauchamp, L.;
Schaeffer, H. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5716–5720.
10. (a) Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R.
T.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1989, 32, 2507–2509; (b)
Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Nitta, I.;
Baba, M.; Shigeta, S.; Walker, R. T.; De Clercq, E.; Miyasaka, T. J.
Med. Chem. 1992, 35, 4713–4719; (c) Ren, J.; Esnouf, R.; Garman, E.;
Somers, D.; Ross, C.; Kirby, I.; Keeling, J.; Darby, G.; Jones, Y.;
Stuart, D.; Stammers, D. Nature Struct. Biol. 1995, 2, 293–302.
11. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021; (b) Kolb, H. C.; Sharpless, K. B. Drug Discovery
Today 2003, 8, 1128–1137; (c) Bock, V. D.; Hiemstra, H.; Maar-
seveen, J. H. Eur. J. Org. Chem. 2006, 51–68; (d) Moses, J. E.;
Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249–1262.
12. (a) Keyser, G. E.; Bryant, J. D.; Barrio, J. R. Tetrahedron Lett. 1979,
20, 3263–3264; (b) Robins, M. J.; Hatfield, P. W. Can. J. Chem. 1982,
60, 547–553.
13. Preparation of 1 and 10: In a solution of methyl 5-azide-1,2,4-triazole-
3-carboxylate (1.25 g, 7.4 mmol) in 40 mL anhydrous acetonitrile,
0.28 g of sodium hydride (70% in mineral oil, 8.2 mmol) was added
portionwise under strong stirring. When sodium hydride was
completely dissolved, 1.58 mL (8.9 mmol) of 2-(chloromethoxy)ethyl
benzoate was added dropwise, and the mixture was stirred at room
temperature for 72 h. The reaction mixture was filtrated and the
filtrate was concentrated under reduced pressure. The residue was
purified on silica gel with petroleum ether/ethyl acetate (2:1, v/v),
affording 1 as a white solid (1.07 g, 41.8%) and 10 as a waxy solid
(0.75 g, 29.2%).
Experimental: 1H NMR spectra were recorded at
300 MHz and 13C NMR spectra at 75 MHz or 150 MHz,
on Varian Mercury-VX300 and Varian Inova-600 spec-
trometers. The chemical shifts were recorded in parts per
million (ppm) with TMS as internal reference. FAB and
ESI MS were determined using ZAB-HF-3F or Finnigan
LCQ Advantage mass spectrometer. High resolution mass
spectra were obtained by Matrix-assisted laser desorption/
ionization mass spectrometry (MALDI-MS) using an Ion-
Spec 4.7 Tesla fourier transform mass spectrometer. Flash
chromatography was performed using silica gel (200–300
mesh) from Qingdao Ocean Chemicals in China.
Acknowledgments
Financial support from the Ministry of Science and
Technology of China (Nos. 2003CB114400, 2003CB51-
4102, 2003AA2Z3506), National Natural Science Founda-
tion of China (Nos. 20372055, 20572081, 20672062), Tian-
jin Natural Science Foundation (No. 07JCYBJC01200),
International Collaboration Program of Tianjin on Science
and Technology (No. 07ZCGHHZ01400), Wuhan Univer-
sity and CNRS is gratefully acknowledged. We thank Dr.
14. Wu, Q. Y.; Qu, F. Q.; Wan, J. Q.; Zhu, X.; Xia, Y.; Peng, L. Helv.
Chim. Acta 2004, 87, 811–819.
15. General procedure for preparing 2 via copper(I)-catalyzed Huisgen
reaction: Azide (1) (ca. 0.10 mmol) and the corresponding alkyne
(1.2 equiv, 0.12 mmol) were dissolved in 8 mL THF/H2O (1:3, v/v). A
freshly prepared aqueous solution of sodium ascorbate (0.5 equiv,
0.05 mmol, in 0.1 mL water) was added, followed by a freshly
prepared aqueous solution of CuSO4ꢀ5H2O (0.05 equiv or 0.3 equiv in
0.1 mL water). The reaction mixture was stirred at 40 °C until