Kato et al.
have been of much interest as the active layer in organic field-
effect transistors (OFETs).3,4 In this context, the preparation of
core-substituted naphthalene dianhydrides as versatile precursors
has been most recently explored to develop the NDI-based future
functional materials by Wu¨rthner et al.5 In supramolecular
chemistry, aromatic diimides with both an electron-withdrawing
property and extended π-surface, which exploit the charge-
transfer (CT) interactions between aromatic π-systems, i.e.,
alkoxynaphthalenes, have been used in the design of a plethora
of supramolecular architectures, such as [2]catenanes,6,7 [2]ro-
taxanes,8 folded aedamers,9 and macrocycle-tweezer com-
plexes.10 Additionally, the aggregation of PBIs with solubilizing
3,4,5-trialkoxyphenyl and 3,4,5-trialkylphenyl substituents at the
imide functional groups were achieved both in solution and in
the condensed phase on the basis of their strong π-stacking
interactions and van der Waals interactions.11 Afterward, it was
recently reported that NDIs and PBIs, which enable π-stacking
interactions, hydrogen bonding, and van der Waals interactions,
formed robust 1D organogel structures.12 Thus, the created
supramolecular structures could be regarded as candidates for
the attractive functional materials due to the presence of
photophysically and electrochemically active aromatic diim-
ides.13
Pyromellitic diimides, which have only a central benzene
core, are the smallest moieties among the class of aromatic
diimides. Pyromellitic diimides also have a sufficient electron
affinity and can interact with electron-rich π-systems by CT
interactions in solution and the solid state regardless of the
smallness of their core π surfaces relative to NDIs and PBIs.
Therefore, the creation of supramolecular architectures,14 es-
pecially [2]catenanes7a–f and [2]rotaxanes,8b–d and their applica-
tions to molecular receptors15 have been achieved due to their
peculiar properties similar to those of the NDIs and PBIs.
Although the functionalized pyromellitic diimides would be
important compounds in terms of their optoelectronic and
electrochemical properties, only a limited number of them have
been reported.16
We have been investigating the molecular recognition proper-
ties of pyromellitic diimide-based macrocycles, which were
synthesized by the cyclocondensation of commercially available
pyromellitic dianhydride and alkoxy-substituted bis(amino-
methyl)arenes.17 Recently, we reported the first example of
“cyclophanes within cyclophanes” based on CT interactions as
the driving force, which has been confirmed by X-ray
crystallography.17a Furthermore, we have more recently syn-
thesized the macrocycle 1, and 1 constructs 1D and 2D
supramolecular assemblies with naphthols in the solid states with
the regioselectivity of the hydroxyl groups of the naphthols and
exhibits redox modulations via noncovalent interactions with
the naphthols (Figure 1).17b As a part of our continuing effort
to develop this type of pyromellitic diimide-based macrocycle,
we planned to synthesize a macrocycle with a linear π-electronic
system 2 and bis(phenylethynyl)pyromellitic diimide 3 in which
the phenylethynyl groups were introduced at the core benzene
rings because of the interest in the effect of the elongated
π-system in the pyromellitic diimide moiety on their optoelec-
tronic and electrochemical properties (Figure 1). Compounds 2
and 3 are regarded as aromatic acetylene analogues which are
now recognized as ideal materials for advanced applications.18,19
We now report the synthesis of 2 and 3 and their electronic
(3) (a) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li,
W.; Lin, Y.-Y.; Dodabalapur, A. Nature 2000, 404, 478–481. (b) Katz, H. E.;
Johnson, J.; Lovinger, A. J.; Li, W. J. Am. Chem. Soc. 2000, 122, 7787–7792.
(c) Hizu, K.; Sekitani, T.; Someya, T.; Otsuki, J. Appl. Phys. Lett. 2007, 90,
093504.
(4) (a) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.;
Wasielewski, M. R. Angew. Chem., Int. Ed. 2004, 43, 6363–6366. (b)
Chesterfield, R. J.; Mckeen, J. C.; Newman, C. R.; Ewbank, P. C.; da Silva
Filho, D. A.; Bre´das, J.-L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D. J. Phys.
Chem. B 2004, 108, 19281–19292. (c) Jung, T.; Yoo, B.; Wang, L.; Dodabalapur,
A.; Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J Appl. Phys.
Lett. 2006, 88, 183012(13). (d) Yoo, B.; Madgavkar, A.; Jones, B. A.; Nadkarni,
S.; Facchetti, A.; Dimmler, K.; Wasielewski, M. R.; Marks, T. J.; Dodabalapur,
A. IEEE Electron DeVice Lett. 2006, 27, 737–739. (e) Wang, Y.; Chen, Y.; Li,
R.; Wang, S.; Su, W.; Ma, P.; Wasielewski, M. R.; Jiang, J. Langmuir 2007, 23,
5842–5863.
(5) (a) Thalacker, C.; Ro¨ger, C.; Wu¨rthner, F. J. Org. Chem. 2006, 71, 8098–
8105. (b) Ro¨ger, C.; Wu¨rthner, F. J. Org. Chem. 2007, 72, 8070–8075.
(6) For a review of catenanes and oligocatenanes, see: Raehm, L.; Hamilton,
D. G.; Sanders, J. K. M. Synlett 2002, 1743–1761.
(7) For [2]catenanes, see: (a) Hamilton, D. G.; Sanders, J. K. M.; Davies,
J. E.; Clegg, W.; Teat, S. J. Chem. Commun. 1997, 897–898. (b) Hamilton, D. G.;
Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem. Eur. J. 1998, 4, 608–620. (c)
Hamilton, D. G.; Feeder, N.; Prodi, L.; Teat, S. J.; Clegg, W.; Sanders, J. K. M.
J. Am. Chem. Soc. 1998, 120, 1096–1097. (d) Zhang, Q.; Hamilton, D. G.; Feeder,
N.; Teat, S. J.; Goodman, J. M.; Sanders, J. K. M. New J. Chem. 1999, 23,
897–903. (e) Hamilton, D. G.; Prodi, L.; Feeder, N.; Sanders, J. K. M. J. Chem.
Soc., Perkin Trans. 1 1999, 1057–1065. (f) Hamilton, D. G.; Montalti, M.; Prodi,
L.; Fontani, M.; Zanello, P.; Sanders, J. K. M. Chem. Eur. J. 2000, 6, 608–617.
(g) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.; Becher, J.; Sanders,
J. K. M. Org. Lett. 2000, 2, 449–452. (h) Gunter, M. J.; Farquhar, S. M. Org.
Biomol. Chem. 2003, 1, 3450–3457. (i) Fallon, G. D.; Lee, M. A.-P.; Langford,
S. J.; Nichols, P. J. Org. Lett. 2004, 6, 655–658. (j) Kaiser, G.; Jarrosson, T.;
Otto, S.; Ng, Y.-F.; Bond, A. D.; Sanders, J. K. M. Angew. Chem., Int. Ed.
2004, 43, 1959–1962.
(13) For the recent examples, see: (a) Chen, Z.; Stepanenko, V.; Dehm, V.;
Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Marquetand, P.; Engel, V.; Wu¨rthner, F.
Chem. Eur. J. 2007, 13, 436–449. (b) Chen, Z.; Baumeister, U.; Tschierske, C.;
Wu¨rthner, F. Chem. Eur. J. 2007, 13, 450–465.
(14) For pyromellitic diimide-bassed molecular duplexes, see: (a) Zhou, Q.-
Z.; Jiang, X.-K.; Shao, X.-B.; Chen, G.-J.; Jia, M.-X.; Li, Z.-T. Org. Lett. 2003,
5, 1955–1958. (b) Zhou, Q.-Z.; Jia, M.-X.; Shao, X.-B.; Wu, L.-Z.; Jiang, X.-
K.; Li, Z.-T.; Chen, G.-J. Tetrahedron 2005, 61, 7117–7124.
(15) (a) Chen, G.; Lean, J. T.; Alcala´, M.; Mallouk, T. E. J. Org. Chem.
2001, 66, 3027–3034. (b) Colquhoun, H. M.; Williams, D. J.; Zhu, Z. J. Am.
Chem. Soc. 2002, 124, 13346–13347.
(8) For [2]rotaxanes, see: (a) Nakamura, Y.; Minami, S.; Iizuka, K.;
Nishimura, J. Angew. Chem., Int. Ed. 2003, 42, 3158–3162. (b) Wang, X-Z.;
Li, X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang, X.-K.; Li, Z.-T.; Chen, Y.-Q.
Chem. Eur. J. 2003, 9, 2904–2913. (c) Vignon, S. A.; Jarrosson, T.; Iijima, T.;
Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F J. Am. Chem. Soc. 2004, 126,
9884–9885. (d) Iijima, T.; Vignon, S. A.; Tseng, H.-R.; Jarrosson, T.; Sanders,
J. K. M.; Marchioni, F.; Venturi, M.; Apostoli, E.; Balzani, V.; Stoddart, J. F.
Chem. Eur. J. 2004, 10, 6375–6392.
(16) Fox et al. have most recently reported the synthesis of π-conjugated
compounds based on pyromellitic diimide moiety, N,N′-di(2-tert-butylphenyl)-
3,6-di(4-chlorophneyl)pyromellitic diimide, by the approach different from ours.
See: Dong, Z.; Liu, X.; Yap, G. P. A.; Fox, J. M. J. Org. Chem. 2007, 72,
617–625.
(17) (a) Iwanaga, T.; Yasutake, M.; Takemura, H.; Sako, K.; Shinmyozu, T.
Angew. Chem., Int. Ed. 2006, 45, 3643–3647. (b) Kato, S.; Matsumoto, T.; Ideta,
K.; Shimasaki, T.; Goto, K.; Shinmyozu, T. J. Org. Chem. 2006, 71, 4723–
4733. (c) Kato, S.; Nakagaki, T.; Shimasaki, T.; Shinmyozu, T. CrystEngComm
In press.
(9) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303–305. (b) Nguyen,
B. L.; Iverson, B. L. J. Am. Chem. Soc. 1999, 121, 2639–2640. (c) Gabriel,
G. J.; Iverson, B. L. J. Am. Chem. Soc. 2002, 124, 15174–15175.
(10) (a) Colquhoun, H. M.; Zhu, Z.; Williams, D. J. Org. Lett. 2003, 5, 4353–
4356. (b) Colquhoun, H. M.; Zhu, Z. Angew. Chem., Int. Ed. 2004, 43, 5040–
5045.
(18) (a) Stang, P. J.; Diederich, F., Eds. Modern Acetylene Chemistry; Wiley-
VCH: Weinheim, 1995. (b) de Meijere, A., Ed. Top. Curr. Chem. (Carbon Rich
Compounds I); Springer: Berlin, Germany, 1998; Vol. 196. (c) de Meijere, A.,
Ed. Top. Curr. Chem. (Carbon Rich Compounds I); Springer: Berlin, Germany,
1999; Vol. 201. (d) Diederich, F.; Stang, P. J.; Tykwinski, R. R., Eds. Acetylene
Chemistry: Chemistry, Biology, and Material Science; Wiley-VCH: Weinheim,
Germany, 2005. (e) Haley, M. M.; Tykwinski, R. R., Eds. Carbon-Rich
Compounds: From Molecules to Materials; Wiley-VCH: Weinheim, Germany,
2006.
(11) (a) Wu¨rthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J.
2001, 7, 2245–2253. (b) Wu¨rthner, F.; Chen, Z.; Dehm, V.; Stepanenko, V. Chem.
Commun. 2006, 1188–1190.
(12) (a) Li, X.-Q.; Stepanenko, V.; Chen, Z.; Prins, P.; Siebbeles, L. D. A.;
Wu¨rthner, F. Chem. Commun. 2006, 3871–3873. (b) Mukhopadhyay, P.; Iwashita,
Y.; Shirakawa, M.; Kawano, S.; Fujita, N.; Shinkai, S. Angew. Chem., Int. Ed.
2006, 45, 1592–1595.
4064 J. Org. Chem. Vol. 73, No. 11, 2008