Organic Letters
Letter
̈
(2) (a) Schmidt, A. W.; Reddy, K. R.; Knolker, H. Chem. Rev. 2012,
112, 3193−3328. (b) Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Chem. Rev.
2018, 118, 3752−3832.
species can be excited by purple LED light, while 3 showed
enhanced absorption than 1 (Scheme 3A). Upon excitation, 1
can be converted to photoenol 4 (for a detailed process, see
Scheme S3). Intermediate 4 is a disfavored dienyne-type
intermediate for 6π-photocyclization. The lifetime of 4 is
around 50 μs,15 which means it has little chance to coordinate
with 1 mol % of Cu(II) to form a favored triene-type
intermediate. Thus, the majority of 4 may de-excite and return
to 1. The excitation of Cu(II)−alkyne complex 3 leads to 5,
which is a favored triene-type intermediate. Then 6π-
photocyclization of 5 occurs, and primary product 6 is
generated. Subsequently, 1,5-H shift or protonation−deproto-
nation gives 7. The dissociation of Cu(II) yields the naphthol
2 as the final product.
In conclusion, a Cu(II)-catalyzed 6π-photocyclization
reaction of o-alkylphenyl alkynyl ketone was developed. This
strategy successfully transferred the non-6π substrate into a
favored triene type intermediate. This reaction showed broad
substrate scope and function group tolarance. Mechanistic
studies indicated that the Cu(II) catalyst facilitated both
photoenolization and 6π-photocyclization processes. Further
photophysical investigation and application of this strategy are
ongoing in our group.
(3) (a) Bach, T.; Grosch, B.; Strassner, T.; Herdtweck, E. J. Org.
̈
Chem. 2003, 68, 1107−1116. (b) Modha, S. G.; Pothig, A.; Dreuw,
A.; Bach, T. J. Org. Chem. 2019, 84, 1139−1153. (c) Pusch, S.;
̈
Troster, A.; Lefrancois, D.; Farahani, P.; Dreuw, A.; Bach, T.; Opatz,
T. J. Org. Chem. 2018, 83, 964−972. (d) Sherburn, M. S. Acc. Chem.
Res. 2015, 48, 1961−1970. (e) Yu, W. L.; Nunns, T.; Richardson, J.;
Booker-Milburn, K. I. Org. Lett. 2018, 20, 1272−1274.
(4) (a) Kumar, S.; Malachowski, W. P.; DuHadaway, J. B.; LaLonde,
J. M.; Carroll, P. J.; Jaller, D.; Metz, R.; Prendergast, G. C.; Muller, A.
J. J. Med. Chem. 2008, 51, 1706−1718. (b) Shengule, S. R.; Loa-Kum-
Cheung, W. L.; Parish, C. R.; Blairvacq, M.; Meijer, L.; Nakao, Y.;
Karuso, P. J. Med. Chem. 2011, 54, 2492−2503.
(5) (a) Tian, H.; Yang, S. Chem. Soc. Rev. 2004, 33, 85−97.
(b) Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev.
2012, 41, 1754−1808. (c) Irie, M.; Fukaminato, T.; Matsuda, K.;
Kobatake, S. Chem. Rev. 2014, 114, 12174−12277.
(6) (a) Sydorenko, N.; Hsung, R. P.; Vera, E. L. Org. Lett. 2006, 8,
2611−2614. (b) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P. Org.
Lett. 2010, 12, 1152−1155. (c) Hayashi, R.; Walton, M. C.; Hsung, R.
P.; Schwab, J. H.; Yu, X. Org. Lett. 2010, 12, 5768−5771.
(7) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Modern Molecular
Photochemistry of Organic Molecules; Viva Books University Science
Books: Sausalito, 2017.
(8) Horspool, W.; Lenci, F. CRC handbook of organic photochemistry
and photobiology; CRC press: Boca Raton, FL, 2003; Vol. 52.
(9) (a) Hitt, D. M.; O’Connor, J. M. Chem. Rev. 2011, 111, 7904−
7922. (b) Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M. Chem. Soc.
Rev. 2016, 45, 4364−4390.
(10) (a) van Arendonk, R. J. F. M.; de Violet, P. H. F.; Laarhoven,
W. H. Rec. Trav. Chim. Pays-Bas 1981, 100, 256−262. (b) Op Den
Brouw, P. M.; Laarhoven, W. H. J. Chem. Soc., Perkin Trans. 2 1982, 2,
795. (c) Sajimon, M. C.; Lewis, F. D. Photoch. Photobio. Sci. 2005, 4,
629. (d) Lewis, F. D.; Karagiannis, P. C.; Sajimon, M. C.; Lovejoy, K.
S.; Zuo, X.; Rubin, M.; Gevorgyan, V. Photoch. Photobio. Sci. 2006, 5,
369.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
sı
Figure S1, Schemes S1−S3, experimental procedures,
and characterization of compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(11) Jin, R.; Chen, J.; Chen, Y.; Liu, W.; Xu, D.; Li, Y.; Ding, A.;
Guo, H. J. J. Org. Chem. 2016, 81, 12553−12558.
Hao Guo − Department of Chemistry, Fudan University,
(12) Cuadros, S.; Melchiorre, P. Eur. J. Org. Chem. 2018, 2018,
2884−2891.
(13) (a) Grosch, B.; Orlebar, C. N.; Herdtweck, E.; Massa, W.; Bach,
T. Angew. Chem., Int. Ed. 2003, 42, 3693−3696. (b) Nicolaou, K. C.;
Gray, D. L. F.; Tae, J. J. Am. Chem. Soc. 2004, 126, 613−627.
Authors
Yanbin Zhang − Department of Chemistry, Fudan University,
Ruiwen Jin − Department of Chemistry, Fudan University,
Shanghai 200438, P.R. China
Wenjie Kang − Department of Chemistry, Fudan University,
Shanghai 200438, P.R. China
(c) Dell’Amico, L.; Vega-Penaloza, A.; Cuadros, S.; Melchiorre, P.
̃
Angew. Chem., Int. Ed. 2016, 55, 3313−3317. (d) Yang, B.; Gao, S.
Chem. Soc. Rev. 2018, 47, 7926−7953. (e) Yang, B.; Lin, K.; Shi, Y.;
Gao, S. Nat. Commun. 2017, 8, 622.
́
(14) (a) Pelliccioli, A. P.; Klan, P.; Zabadal, M.; Wirz, J. J. Am. Chem.
Soc. 2001, 123, 7931−7932. (b) Masuda, Y.; Ishida, N.; Murakami,
M. J. Am. Chem. Soc. 2015, 137, 14063−14066. (c) Shao, Y.; Yang, C.;
Gui, W.; Liu, Y.; Xia, W. Chem. Commun. 2012, 48, 3560−3562.
Complete contact information is available at:
́
(d) Dell’Amico, L.; Fernandez-Alvarez, V. M.; Maseras, F.;
Melchiorre, P. Angew. Chem., Int. Ed. 2017, 56, 3304−3308.
(e) Cuadros, S.; Dell’Amico, L.; Melchiorre, P. Angew. Chem., Int.
Ed. 2017, 56, 11875−11879.
(15) Das, A.; Thomas, S. S.; Garofoli, A. A.; Chavez, K. A.; Krause, J.
A.; Bohne, C.; Gudmundsdottir, A. D. Photochem. Photobiol. 2019, 95,
154−162.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We greatly acknowledge financial support from Shanghai
Science and Technology Committee (18DZ1201607). We
thank Pan Huang at East China University of Science and
Technology for DFT calculations.
REFERENCES
■
(1) (a) Laarhoven, W. H. Rec. Trav. Chim. Pays-Bas 1983, 102, 185−
204. (b) Laarhoven, W. H. Rec. Trav. Chim. Pays-Bas 1983, 102, 241−
254. (c) Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1−456.
D
Org. Lett. XXXX, XXX, XXX−XXX