Structure-Property InVestigations of Conjugated Thiophenes
before. Second, many of these carbon-rich molecules and
macrocycles of higher dimensionality have been shown to
exhibit interesting materials properties such as nonlinear optical
(NLO) activity,4 liquid crystalline behavior,5 and molecular
switching.6 Furthermore, it has recently been demonstrated that
dehydrobenzoannulenes7 and related phenyl-acetylene macro-
cycles8 are useful precursors to a number of carbon-rich
polymeric systems, such as molecular tubes,9 ladder polymers,10
and novel allotropes of carbon.11 It is therefore imperative to
have ready access to a wide variety of these high carbon content
molecules in sufficient quantities via easy synthetic processes
if their technological potential is to be harnessed.
We have been investigating alkyne-rich dehydrobenzoannu-
lenes (DBAs)7,12 with the aim of exploring their diverse
chemical and physical properties. Over the past decade, our
group has developed new or improved existing synthetic
techniques for the preparation of such macrocycles. As one
particular consequence, it is now possible to introduce donor
and/or acceptor functional groups on the phenyl rings of the
DBA in a discrete manner, thus effectively “tuning” the
electronic and optical properties of the annulene.12a In our
continuing endeavor to introduce more variations in the DBA
structure for detailed structure-property relationship studies,
we elected to incorporate thiophene moieties onto the dehy-
droannulene skeleton.13 The choice of thiophene as the fused
aromatic ring was inspired by factors such as the chemical and
electrochemical polymerizability of thiophene, the ability to form
two-dimensional π-systems useful for electronics and photonics,
the easier polarizability of thiophene, and the interaction among
the individual macrocycles due to the lone pairs on the sulfur
in each thiophene ring.14 Compared to other heteroaromatic
FIGURE 1. Examples of known dehydrothienoannulenes.
molecules, thiophenes are typically easier to handle and to
functionalize than furans and pyrroles, allowing ready access
to tailored thiophene derivatives. By locking the conjugated unit
into planarity, thiophene-containing macrocycles15 and cyclic
thiophene-acetylene hybrids16–18 have the potential to be more
efficient materials due to enforced π-orbital overlap, increasing
the quinoidal character of the delocalized system and thus
lowering the HOMO-LUMO energy gap.19
Previous work on dehydrothienoannulenes (DTAs, Figure 1) by
the groups of Youngs (e.g., 1)17 and Marsella (e.g., 2)18 relied on
metal-mediated intermolecular couplings for molecule assembly.
By virtue of the structure of the starting materials, only Cnh- and
Dnh-symmetric macrocycles were produced. To probe the structure/
property relationships among the various structural isomers, it is
necessary to introduce the thiophene moieties in a systematic,
stepwise manner to produce DTAs possessing lower symmetries
(C2V, Cs). Our initial communication focused on the [18]DTA
skeleton;13 however, stability problems with the thienyldiyne
intermediates forced us to examine other topologies. This article
describes the design and stepwise preparation of benzo/thieno-fused
[14]DBTA hybrids 3-9 and the corresponding all-thiophene
containing [14]DTAs 10-14 starting with a few common synthons
(Figure 2). The solid state properties of 8 and 13 are investigated
by X-ray crystallography. We also report the effect of structural
variations on the overall effective conjugation of the macrocycles
as determined by electronic absorption spectroscopy, electrochem-
istry, and DFT computations. Finally, we discuss the thermal
properties of these macrocycles.
(5) (a) Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1994, 116, 2655–2656. (b)
Pesak, D. J.; Moore, J. S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1636–1639.
(c) Seo, S. H.; Jones, T. V.; Seyler, H.; Peters, J. O.; Kim, T. H.; Chang, J. Y.;
Tew, G. N. J. Am. Chem. Soc. 2006, 128, 9264–9265.
(6) (a) Gobbi, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38,
674–678. (b) Gobbi, L.; Seiler, P.; Diederich, F.; Gramlich, V. HelV. Chim. Acta
2000, 83, 1711–1723.
(7) (a) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003,
2355–2369. (b) Spitler, E. L.; Johnson, C. A.; Haley, M. M. Chem. ReV. 2006,
106, 5344–5386.
Results and Discussion
Macrocycle Synthesis. The use of building blocks 15-24
(Figure 3), which conforms to our previous strategies, is
significant for streamlining synthetic efforts and making the
(8) (a) Jones, C. S.; O’Connor, M. J.; Haley, M. M., In ref 2e; pp 303-385.
(b) Zhao, D.; Moore, J. S. Chem. Commun. 2003, 807–818. (c) Zhang, W.;
Moore, J. S. Angew. Chem., Int. Ed. 2006, 45, 4416–4439.
(9) Baldwin, J. P.; Matzger, A. J.; Scheiman, D. A.; Tessier, C. A.; Vollhardt,
K. P. C.; Youngs, W. J. Synlett 1995, 1215–1218.
(10) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59, 1294–
1301.
(15) (a) Kro¨mer, J.; Rios-Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin,
M.; Deba¨rdema¨ker, T.; Mena-Osteritz, E.; Ba¨uerle, P. Angew. Chem., Int. Ed.
2000, 39, 3481–3486. (b) Bednarz, M.; Reineker, P.; Mena-Osteritz, E.; Ba¨uerle,
P. J. Lumin. 2004, 110, 225–231. (c) Kozaki, M.; Parakka, J. P.; Cava, M. P. J.
Org. Chem. 1996, 61, 3657–3661. (d) Hu, Z.; Scordilis-Kelley, C.; Cava, M. P.
Tetrahedron Lett. 1993, 34, 1879–1882.
(11) (a) Boese, R.; Matzger, A. J.; Vollhardt, K. P. C. J. Am. Chem. Soc.
1997, 119, 2052–2053. (b) Tobe, Y.; Nakagawa, N.; Naemura, K.; Wakabayashi,
T.; Shida, T.; Achiba, Y. J. Am. Chem. Soc. 1998, 120, 4544–4545. (c) Rubin,
Y.; Parker, T. C.; Pastor, S. J.; Jalisatgi, S.; Boulle, C.; Wilkins, C. L. Angew.
Chem., Int. Ed. 1998, 37, 1226–1229. (d) Laskoski, M.; Steffen, W.; Morton,
J. G. M.; Smith, M. D.; Bunz, U. H. F. J. Am. Chem. Soc. 2002, 124, 13814–
13818.
(16) (a) Mayor, M.; Didschies, C. Angew. Chem., Int. Ed. 2003, 42, 3176–
3179. (b) Nakao, K.; Nishimura, M.; Tamachi, T.; Kuwatani, Y.; Miyasaka, H.;
Nishinaga, T.; Iyoda, M. J. Am. Chem. Soc. 2006, 128, 16740–16747. (c) Ba¨uerle,
P.; Cremer, J. Chem. Mater. 2008, 20, 2696–2703.
(12) Recent contributions, inter alia: (a) Marsden, J. A.; Miller, J. J.; Shirtcliff,
L. D.; Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464–2476. (b) Marsden,
J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213–10226. (c) Johnson, C. A.;
Baker, B. A.; Berryman, O. B.; Zakharov, L. N.; O’Connor, M. J.; Haley, M. M.
J. Organomet. Chem. 2006, 691, 413–421. (d) Anand, S.; Varnavski, O.;
Marsden, J. A.; Haley, M. M.; Schlegel, H. B.; Goodson, T., III J. Phys. Chem.
A 2006, 110, 1305–1318. (e) Spitler, E. L.; McClintock, S. P.; Haley, M. M. J.
Org. Chem. 2007, 72, 6692–6699. (f) Johnson, C. A., II; Lu, Y.; Haley, M. M.
Org. Lett. 2007, 9, 3725–3728. (g) Tahara, K.; Johnson, C. A., II; Fujita, T.;
Sonoda, M.; De Schryver, F.; De Feyter, S.; Haley, M. M.; Tobe, Y. Langmuir
2007, 23, 10190–10197. (h) Spitler, E. L.; Monson, J. M.; Haley, M. M. J. Org.
Chem. 2008, 73, 2211–2223. (i) Spitler, E. L.; Haley, M. M., Org. Biomol. Chem.
2008, 6, 1569–1576.
(13) (a) Sarkar, A.; Haley, M. M. Chem. Commun. 2000, 1733–1734. (b)
Sarkar, A.; Marsden, J. A.; Haley. M. M. Unpublished results.
(14) (a) Roncali, J. Chem. ReV. 1992, 92, 711–738. (b) Jen, A. K.; Rao, V. P.;
Wong, K. Y.; Drost, K. J. Chem. Commun. 1993, 90–91. (c) Zamboni, R.; Danieli,
R.; Ruini, G.; Taliani, C. Opt. Lett. 1989, 14, 1321–1323.
(17) (a) Solooki, D.; Bradshaw, J. D.; Tessier, C. A.; Youngs, R. J.
Organometallics 1994, 13, 451–455. (b) Zhang, D.; Tessier, C. A.; Youngs,
W. J. Chem. Mater. 1999, 11, 3050–3057. (c) See also: Iyoda, M.; Vorasingha,
A.; Kuwatani, Y.; Yoshida, M. Tetrahedron Lett. 1998, 39, 4701–4704.
(18) (a) Marsella, M. J.; Kim, I. T.; Tham, F. J. Am. Chem. Soc. 2000, 122,
974–975. (b) Marsella, M. J.; Wang, Z.-Q.; Reid, R. J.; Yoon, K. Org. Lett.
2001, 3, 885–887. (c) Marsella, M. J.; Piao, G.; Tham, F. S. Synthesis 2002,
1133–1135. (d) Marsella, M. J.; Reid, R. J.; Estassi, S.; Wang, L.-S. J. Am.
Chem. Soc. 2002, 124, 12507–12510.
(19) (a) Takahashi, T.; Matsuoka, K.; Takimiya, K.; Otsubo, T.; Aso, Y.
J. Am. Chem. Soc. 2005, 127, 8928–8929. (b) Kozaki, M.; Isoyama, A.; Okada,
K. Org. Lett. 2005, 7, 115–118.
(20) (a) Gronowitz, S.; Vilks, V. Ark. Kemi 1964, 21, 191–196. (b) Gronowitz,
S.; Holm, B. Acta Chem. Scand. B 1976, 30, 423–429. (c) Consiglio, G.;
Gronowitz, S.; Ho¨rnfeldt, A.-B.; Noto, R.; Spinelli, D. Chem. Scr. 1980, 16,
117–121. (d) Spagnoto, P.; Zaniroto, P.; Gronowitz, S. J. Org. Chem. 1982, 47,
3177–3180.
J. Org. Chem. Vol. 73, No. 12, 2008 4425