LETTER
Enantioselective [1,2]-Stevens Rearrangement
685
OH
OH
OH
O
a
b
c, d
D-glucose
O
ref. 25a
O
Ph
Ph
O
O
O
O
Ph
Ph
OX
O
OX
O
OX
O
O
O
O
O
O
O
O
O
12a: X = H
12b: X = Li
13a: X = H
13b: X = Li
14a: X = H
14b: X = Li
Scheme 5 Reagents and conditions: (a) cyclohexanone, cat. H2SO4, r.t., 29%; (b) AcOH–H2O (2:1), r.t., 65%; (c) corresponding ketone, tri-
methyl formate, cat. TsOH, r.t. to 60 °C, 12a: 65%, 13a: 68%, 14a: 81%; (d) n-BuLi, toluene, 0 °C.
using copper(I) complex, see: Nozaki, H.; Takaya, H.;
Acknowledgment
Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655. For
This research was supported in part by a Grant-in-Aid for Scientific
representative studies using dirhodium(II) complex, see:
Research on Priority Areas (A) ‘Creation of Biologically Functional
(b) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S.
Molecules’ and Basic Area (B) (No. 14350473) from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.
Tetrahedron Lett. 1997, 38, 4367. (c) Kitagaki, S.;
Yanamto, Y.; Tsutsui, H.; Anada, M.; Nakajima, M.;
Hashimoto, S. Tetrahedron Lett. 2001, 42, 6361.
(7) All the ammonium salts were prepared from the
References and Notes
corresponding a-amino ketones and alkyl bromides and
purified by recrystallization.
(1) Stevens, T. S.; Creighton, E. M.; Gordon, A. B.; MacNicol,
M. J. Chem. Soc. 1928, 3193.
(8) Alkoxides were prepared from the corresponding alcohols
using n-BuLi (1 equiv) at 0 °C.
(9) For a review of asymmetric synthesis using chiral alkoxide,
see: Plaquevent, J.-C.; Perrard, T.; Cahard, D. Chem. Eur. J.
2002, 8, 3300.
(10) Alkoxide 3 has been utilized as a chiral ligand for
asymmetric Michael reaction. See: Kumamoto, T.; Aoki, S.;
Nakajima, M.; Koga, K. Tetrahedron: Asymmetry 1994, 5,
1431.
(11) Alkoxide 4 has been utilized as a chiral promoter for
asymmetric hydrocyanation reaction. See: (a) Holmes, I. P.;
Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453.
(b) Holmes, I. P.; Kagan, H. B. Tetrahedron Lett. 2000, 41,
7457. (c) Hatano, M.; Ikeno, T.; Miyamoto, T.; Ishihara, K.
J. Am. Chem. Soc. 2005, 127, 10776.
(2) For reviews, see: (a) Schöllkopf, U. Angew. Chem. 1970, 82,
795. (b) Markó, I. E. In Comprehensive Organic Synthesis,
Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford,
1991, 913–974. (c) Vanecko, J. A.; Wan, H.; West, F. G.
Tetrahedron 2006, 62, 1043.
(3) For mechanistic studies of [1,2]-Stevens rearrangement,
see: (a) Millard, B. J.; Stevens, T. S. J. Chem. Soc. 1963,
3397. (b) Schöllkopf, U.; Ludwig, U.; Ostermann, G.;
Patsch, M. Tetrahedron Lett. 1969, 10, 3415. For
theoretical studies of [1,2]-Stevens rearrangement, see:
(c) Heard, G. L.; Frankcombe, K. E.; Yates, B. F. Aust. J.
Chem. 1993, 46, 1375. (d) Heard, G. L.; Yates, B. F. Aust. J.
Chem. 1994, 47, 1685.
(4) (a) Recently, Somfai and co-workers reported the first
example of enantioselective [2,3]-Stevens rearrangement of
allylic ammonium ylide using chiral Lewis acid promoter:
Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005,
127, 9352. (b) Also, the concomitantly occurred
(12) Alkoxide 5 has been utilized as a chiral initiator for
asymmetric polymerization. See: Okamoto, Y.; Matsuda,
M.; Nakano, T.; Yashima, E. J. Polym. Sci., Part A: Polym.
Chem. 1994, 32, 309.
(13) Alkoxide 6 has been utilized as a chiral base for asymmetric
elimination and chiral ligand for asymmetric alkynylation.
See: (a) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem.
1991, 56, 4264. (b) Thompson, A. S.; Corley, E. G.;
Huntington, M. F.; Grabowski, E. J. J. Tetrahedron Lett.
1995, 36, 8937.
(14) HPLC analysis was carried out on a Chiralcel OD-H column
(0.46 × 25 cm) using hexane–i-PrOH (150:1; 0.5 mL/min) as
the mobile phase.
enantioselective [1,2]-Stevens rearrangement has been
reported therein.
(5) Asymmetric [1,2]-Stevens rearrangement using
enantioenriched ammonium ylide has been reported. For the
rearrangement with chiral migrating group, see:
(a) Campbell, A.; Houston, A. H. J.; Kenyon, J. J. Chem.
Soc. 1947, 93. (b) Brewster, J. H.; Kline, M. W. J. Am.
Chem. Soc. 1952, 74, 5179. (c) Joshua, H.; Gans, R.;
Mislow, K. J. Am. Chem. Soc. 1968, 90, 4884.
(15) A rapid racemization of a similar chiral a-amino ketone
under weakly basic conditions had been observed; see ref.
5e.
(d) Brewster, J. H. J. Org. Chem. 1969, 354. (e) Harada,
M.; Nakai, T.; Tomooka, K. Synlett 2004, 365. For the
rearrangement with nitrogen chiral center, see: (f) Glaeske,
K. W.; West, F. G. Org. Lett. 1999, 1, 31. (g) Tayama, E.;
Nanbara, S.; Nakai, T. Chem. Lett. 2006, 35, 478.
(6) Enantioselective [1,2]-Stevens rearrangement of oxonium
ylide generated from a diazo compound using a chiral metal
complex has been developed: (a) For a representative study
(16) All the compounds were characterized by 1H and 13C NMR
analyses. Data for selected products are as follows. 1b: 1H
NMR (300 MHz, CDCl3): = 8.48 (d, J = 7.5 Hz, 2 H), 7.50–
7.70 (m, 8 H), 6.88 (q, J = 7.2 Hz, 1 H), 5.29 (d, J = 12.0 Hz,
1 H), 5.06 (d, J = 12.0 Hz, 1 H), 3.42 (s, 3 H), 3.34 (s, 3 H),
Synlett 2008, No. 5, 683–686 © Thieme Stuttgart · New York