10.1002/adsc.201800666
Advanced Synthesis & Catalysis
ethyl acetate and filtered through a short pad of celite, the
volatiles were removed under vacuum and the residue was
purified by column chromatography (silica gel, petroleum
ether/ethyl acetate) to give the pure products.
Gao, J. You, Angew. Chem. Int. Ed. 2009, 48, 3296-
3300.
[6] Q. Xiao, L. Ling, F. Ye, R. Tan, L. Tian, Y. Zhang, Y.
Li, J. Wang, J. Org. Chem. 2013, 78, 3879-3885.
General Procedure for Deuterium incorporation
studies
[7] a) L.-C. Campeau, S. Rousseaux, K. Fagou, J. Am.
Chem. Soc. 2005, 127, 18020-18021. b) L.-C. Campeau,
K. Fagnou Chem. Soc. Rev. 2007, 36, 1058-1068. c) A.
Larivée, J. J. Mousseau, A. B. Charette, J. Am. Chem.
Soc. 2008, 130, 52-54. d) D. J. Schipper, M. El-Salfiti,
C. J. Whipp, K. Fagnou, Tetrahedron 2009, 65, 4977-
4983. e) B. Liu, Z. Wang, N. Wu, M. Li, J. You, J. Lan,
Chem. Eur. J. 2012, 18, 1599-1603. f) J. A. Bull, J. J.
Mousseau, G. Pelletier, A. B. Charette, Chem. Rev.
2012, 112, 2642-2713. g) J. J. Mousseau, A. B.
Charette, Acc. Chem. Res. 2013, 46, 412-424. h) Y.
Shen, J. Chen, M. Liu, J. Ding, W. Gao, X. Huang, H.
Wu, Chem. Commun. 2014, 50, 4292-4295. i) O. V.
Larionov, D. Stephens, A. Mfuh, G. Chavez, Org. Lett.
2014, 16, 864-867.
An oven-dried 25 mL Schlenk tube equipped with
magnetic stirring bar was charged with appropriate starting
material (0.25 mmol), and PivOK (70.0 mg, 0.5 mmol, 2.0
equiv), The tube was sealed and the mixture was charged
with nitrogen gas three times, then DMAc (0.25 mL) and
D2O (0.25 mL) was added to the sealed reaction vessel by
syringe. The resulting solution was stirred at 150 °C for 16
h. After cooling to room temperature, the mixture was
diluted with CH3CN and filtered through a short pad of
celite, the volatiles were removed under vacuum and crude
product was analyzed by 1H NMR.
Computational Methods
All of the DFT calculations conducted in this study were
carried out using the GAUSSIAN 09 series of programs.
DFT method B3-LYP8 with a standard 6-31G(d) basis set
(SDD basis set for Pd, Cu and I) was used for the geometry
optimizations. The M11-L functional, proposed by Truhlar
et al., was used with a 6-311+G(d,p) basis set (SDD basis
set for Pd, Cu and I) to calculate the single point energies.
The solvent effects were taken into consideration using
single point calculations based on the gas-phase stationary
points with a SMD continuum solvation model.9 The
energies presented in this paper are the M11-L calculated
Gibbs free energies in toluene solvent with B3-LYP
calculated thermodynamic corrections.
[8] a) R. A. Abramovitch, G. M. Singer, A. R. Vinutha,
Chem. Commun. (London), 1967, 55-56. b) J. A.
Zoltewicz, L. S. Helmick, J. Am. Chem. Soc. 1970, 92,
7547-7552.
[9] a) B. D. Aumann, L. W. Deady, J. Chem. Soc., Chem.
Commun. 1973, 32-33. b) Ho, T. L., Synth. Commun.
1973, 3, 99-100. c) J. P. Kutney, R. Greenhouse, Synth.
Commun. 1975, 5, 119-124. d) A. N. Kost, S. P.
Gromov, R. S. Sagitullin, Tetrahedron 1981, 37, 3423-
3454.
Acknowledgements
[10] a) R. Cordone, W. D. Harman, H. Taube, J. Am.
Chem. Soc. 1989, 111, 2896-2900. b) J. S. Owen, J. A.
Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2004, 126,
8247-8255. c) G. Song, Y. Zhang, Y. Su, W. Deng, K.
Han, X. Li, Organometallic. 2008, 27, 6193-6201. d) O.
Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht,
Chem. Rev. 2009, 109, 3445-3478. e) J. Xu, G. Cheng,
D. Su, Y. Liu, X. Wang, Y. Hu, Chem. Eur. J. 2009, 15,
13105-13110. f) E. Stander-Grobler, O. Schuster, G.
Heydenrych, S. Cronje, E. Tosh, M. Albrecht, G.
Frenking, H. G. Raubenheimer, Organometallics 2010,
29, 5821-5833. g) K. Hata, Y. Segawa, Y. K. Itami,
Chem. Commun. 2012, 48, 6642-6644.
We thank the National Natural Science Foundation of China (No.
21572137) and the Key Program of Sichuan Science and
Technology Project (No. 2018GZ0312) for their financial support.
We are grateful to the Comprehensive Training Platform of
Specialized Laboratory, College of Chemistry, Sichuan
University. We also thank the Centre of Testing & Analysis,
Sichuan University, for NMR measurements.
References
[1] a) P. E. Fanta, Chem. Rev. 1964, 64, 613-632. b) A. H.
Lewin, T. Cohen, Tetrahedron Lett. 1965, 50, 4531-
4536.
[11] a) Y.-F. Wang, S. Chiba, J. Am. Chem. Soc. 2009,
131, 12570-12572. b) W. Hagui, N. Besbes, E. Srasra,
J.-F. Soulé,; H. Doucet, RSC. Adv. 2016, 6, 17110-
17117. c) N. A. Isley, Y. Wang, F. Gallou, S. Handa, D.
H. Aue, B. H. Lipshutz, ACS Catal. 2017, 7, 8331-8337.
[2] a) H. Malmberg, M. Nilsson, Tetrahedron 1982, 38,
1509-1510. b) H. Malmberg, M. Nilsson, Tetrahedron
1986, 42, 3981-3986.
[3] a) J. Z. Deng, D. V. Paone, A. T. Ginnetti, H. Kurihara,
S. D. Dreher, S. A. Weissman, S. R. Stauffer, C. S.
Burgey, Org. Lett. 2009, 11, 345-347. b) D.
Hackenberger, P. Weber, D. C. Blakemore, L. J.
Goossen, J. Org. Chem. 2017, 82, 3917-3925.
[12] a) F. Kröhnke, W. Zecher, J. Curtze, D. Drechsler, K.
Pfleghar, K. E. Schnalke, W. Weis, Angew. Chem. Int.
Ed. 1962, 1, 626-632. b) A. Markovac, M. P.
LaMontagne, P. Blumbergs, A. B. Ash, C. L. Stevens, J.
Med. Chem. 1972, 15, 918-922. c) G. D. Henry,
Tetrahedron 2004, 60, 6043-6061.
[4] H.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2011, 133,
13577-13586.
[5] a) H.-Q. D. a. O. Daugulis, J. Am. Chem. Soc. 2007,
129, 12404-12405. b) H.-Q. Do, R. M. K. Khan, O.
Daugulis J. Am. Chem. Soc. 2008, 130, 15185-15192.
c) D. Zhao, W. Wang, F. Yang, J. Lan, L. Yang, G.
[13] a) K. Godula, B. Sezen, D. Sames, J. Am. Chem. Soc.
2005, 127, 3648-3649. b) P. Guo, J. M. Joo, S. Rakshit,
D. Sames, J. Am. Chem. Soc. 2011, 133, 16338-16341.
c) M. Ye, G. L. Gao, A. J. Edmunds, P. A. Worthington,
J. A. Morris, J. Q. Yu, J. Am. Chem. Soc. 2011, 133,
7
This article is protected by copyright. All rights reserved.