SCHEME 1. Retrosynthesis of 1,5-Keto Esters
A New Entry to 1,5-Keto Esters and Their
4,4-Dideuterio Derivatives via Methylene
Chloride as “Methylene Dianion” Equivalents
Kuo-Wei Lin, Cheng-Yih Chen, Wei-Fan Chen, and
Tu-Hsin Yan*
Department of Chemistry, National Chung-Hsing UniVersity,
Taichung 400, Taiwan, Republic of China
ReceiVed April 2, 2008
TABLE 1. Reaction Conditions for a Multicomponent Coupling of
Amide 1a with CH2Cl2 and Methyl Acrylate
rxn. temp
(°C)
time
(h)
TiCl4/Mga
(equiv)
NEt3
(equiv)
yield (%)
entry
of 2ab
1
2
3
4
5
6
7
0
25
0
25
0
3
12
3
3
3
1.5/8
1.5/8
1.5/8
1.5/8
1.5/8
2.0/8
6/35c
0
0
3
3
6
∼15
∼15
75
74
74
This TiCl4-Mg promoted multicomponent coupling of
various amides with CH2Cl2 and methyl acrylate represents
an extremely simple and practical synthesis of 1,5-keto esters.
The efficiency of this chemistry is illustrated by the very
simple preparation of unusual 4,4-dideuterio-1,5-keto esters.
0
0
3
3
3
10
71
73
a The reaction was performed on a 1-mmol scale with 2 mL of THF
and 2-3 equiv of methyl acrylate. b Isolated yield. c 5-mmol scale.
The importance of 1,5-keto esters in and of themselves and
as building blocks for further structural elaboration make their
availability important. Michael addition of electron-rich alkenes
such as metal enolates,1 enamines,2 trimethylsily enol ethers/
TiCl4,3 and stannyl ketone enolates/Bu4NBr4 to R,ꢀ-unsaturated
carbonyls constitutes one of the most useful methods for
construction of 1,5-dicarbonyl compounds under mild condi-
tions. The major shortcoming of this transformation lies in the
preparation or isolation of the ketone- or ester-derived nucleo-
philic species. In searching for new strategies based upon the
concept of multicomponent addition, we turned our attention
to the one-pot joining reaction of amides, CH2Cl2, and methyl
acrylate promoted by TiCl4-Mg bimetallic species, wherein the
titanium-methylene complex5,6 serves as a synthetic equivalent
to methylene dianion as illustrated in Scheme 1. The indication
that such a one-pot joining process may occur came as a result
of our probing the mechanism of the amide-cyclopropanation
promoted by the titanium-methylene complex derived from the
TiCl4-Mg-CH2Cl2 system,6a wherein the intermediate enamine
generated in situ can undergo subsequent coupling with methyl
acrylate. Herein we wish to record protocols whereby such a
novel multicomponent coupling promoted by TiCl4-Mg can
be directed to form either 1,5-keto esters or unusual deuterated
keto esters.
The multicomponent coupling of a simple morpholine amide
1a with CH2Cl2 and methyl acrylate was chosen to test the
feasibility of the process (Table 1). Exposing 1a to magnesium
powder (8 equiv, ca. 50 mesh) and TiCl4 (1.5 equiv) in CH2Cl2/
(1) (a) ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon Press:
Oxford, UK, 1991; Vol. 4, (b) Oare, D. A.; Heathcock, C. H. J. Org. Chem.
1990, 55, 157. (c) Yamaguchi, M.; Tsukamoto, M.; Hirao, I. Chem. Lett. 1984,
375. (d) House, H. O.; Roelofs, W. L.; Trost, B. M. J. Org. Chem. 1990, 55,
157.
(2) (a) Stork, G.; Landesman, H. K. J. Am. Chem. Soc. 1956, 78, 5128. (b)
For Michael additions of metalloenamines to unsaturated esters at low temper-
ature, see: Enders, D.; Papadopoulos, K.; Rendenbach Beatrice, E. M. Tetra-
hedron Lett. 1986, 27, 3491. (c) For a novel radical addition of an R-halo ketone
to methyl acrylate at low temperature, see: Qiu, Z.-M.; Burton, D. J. J. Org.
Chem. 1995, 60, 6798.
(5) For some recent references for titanium-methylene complexes, see: (a)
Yan, T.-H.; Tsai, C.-C.; Chien, C.-T.; Cho, C.-C.; Huang, P.-C. Org. Lett. 2004,
6, 4961. (b) Yan, T.-H.; Chien, C.-T.; Tsai, C.-C.; Lin, K.-W.; Wu, Y.-H. Org.
Lett. 2004, 6, 4965. (c) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990,
112, 6392. (d) Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett.
1985, 26, 5581. (e) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am.
Chem. Soc. 1980, 102, 3270. (f) Tebbe, F. N. G.; Parshall, W.; Reddy, G. S.
J. Am. Chem. Soc. 1978, 100, 3611. (g) Takai, K.; Hotta, Y.; Oshima, K.; Nozaki,
H. Tetrahedron Lett. 1978, 19, 2417. (h) For a recent review on the use of
titanium carbenoids to convert carbonyl compounds into alkenes, see: Hartley,
R. C.; Li, J.; Main, C. A.; McKiernan, G. J. Tetrahedron 2007, 63, 4825.
(6) (a) Lin, K.-W.; Yan, S.; Hsieh, I.-L.; Yan, T.-H. Org. Lett. 2006, 8, 2265.
(b) Tsai, C.-C.; Hsieh, I.-L.; Cheng, T.-T.; Tsai, P.-K.; Lin, K.-W.; Yan, T.-H.
Org. Lett. 2006, 8, 2261.
(3) (a) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett. 1974, 1223. (b)
Narasaka, K.; Soai, K.; Aikawa, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1976,
49, 779.
(4) (a) Yasuda, M.; Chiba, K.; Ohigashi, N.; Katoh, Y.; Baba, A. J. Am.
Chem. Soc. 2003, 125, 7291. (b) Yasuda, M.; Chiba, K.; Baba, A. J. Am. Chem.
Soc. 2000, 122, 7549. (c) Yasuda, M.; Hayashi, K.; Katoh, Y.; Shibata, I.; Baba,
A. J. Am. Chem. Soc. 1998, 120, 715. (d) Yasuda, M.; Ohigashi, N.; Shibata, I.;
Baba, A. J. Org. Chem. 1999, 64, 2180. (e) Yasuda, M.; Katoh, Y.; Shibata, I.;
Baba, A.; Matsuda, H.; Sonoda, N. J. Org. Chem. 1994, 59, 4386.
10.1021/jo800732s CCC: $40.75
Published on Web 05/17/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4759–4761 4759