Published on Web 06/10/2008
Twisted Perylene Stereodimers Reveal Chiral Molecular
Assembly Codes
Wei Wang, Andrew D. Shaller, and Alexander D. Q. Li*
Department of Chemistry, Washington State UniVersity, Pullman, Washington 99164
Received December 20, 2007; E-mail: dequan@wsu.edu
Abstract: Unique perylene diastereomeric linear and cyclic dimers were synthesized from twisted perylene
monomers, revealing that π-stacking stereoisomerism imparted specific intermolecular self-assembly and
intramolecular folding. Only the homochiral twisted tetrachloroperylene monomers cyclized via a cooperative
reaction, forming the homochiral diastereomers. The heterochiral tetrachloroperylene monomers proceeded
through a stepwise reaction and yielded a linear heterochiral dimer, which equilibrated with the linear
homochiral dimers. The linear homochiral dimers cyclized to produce the same cyclic homochiral
diastereomers. These results demonstrated that homochiral and heterochiral self-assemblies were two
distinct molecular codes, directing two specific chemical pathways. The homochiral cyclic dimers remain
isomerically pure at -20 °C but can be interconverted to the heterochiral cyclic dimer meso compound at
room temperature. The diastereomers were readily separated by HPLC. While driven by solvophobic forces,
foldable linear dimers synthesized from the same twisted monomers using phosphoramidite chemistry folded
into homodimer and heterodimer, confirming the inherent molecular codes, which were dictated by the
perylene chirality, ultimately gauged the weak π-stack forces, and directed self-assembly and folding.
Introduction
approach utilizes molecular templates to modulate the effective
molarity of reactive groups, providing a bias for certain
While covalent bonds establish the primary molecular struc-
tures, weak intra- and intermolecular forces govern molecular
recognition and determine the folded or self-assembled su-
pramolecular architecture. When the delicate balance of weak
forces is reached, molecular assemblies such as DNA duplex
and globular proteins establish their structure, gaining exquisite
functionality. These weak forces typically include dispersion
forces, hydrogen bonding, solvophobic effects, and Coulombic
interactions.1 Recently, however, more and more reports are
focusing on the often overlooked weak π-π stacking force,
resulting from the molecular overlap of π-orbitals between
planar aromatic systems.2
pathways over competing ones by increasing the proximity
between reaction centers.4,5 However, with molecular self-
assemblies, no template is needed, as the reactants undergo the
assembly process by self-templating.6
In our recent reports, the role of the π-π stacking force
driving dynamic intermolecular self-assembly and intramolecular
folding has been elucidated with a series of architecturally
diverse nanostructured foldamers (folded polymers) using planar
perylenetetracarboxylic diimides (PDIs) as the building block.6,7
We first demonstrated that the planar monomers with minimally
steric but highly solubilizing flexible tetraethylene glycol (TEG)
side chains will spontaneously self-assemble above a critical
self-assembly concentration, even in the absence of solvophobic
Molecular assemblies allow the capacity to mimic nature by
directing specific reaction pathways that are otherwise difficult
to achieve. Such assemblies have been successfully demon-
strated to form cyclic and/or concatenated rings.3 A popular
Int. Ed. 2004, 43, 1959–1962. (e) Fuller, A. M. L.; Leigh, D. A.; Lusby,
P. J.; Slawin, A. M. Z.; Walker, D. B. J. Am. Chem. Soc. 2005, 127,
12612–12619. (f) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker,
D. B. Angew. Chem., Int. Ed. 2005, 44, 4557–4564.
(1) (a) Whitesides, G.; Boncheva, M. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 4769–4774. (b) Li, S. ; Yan, H.-J.; Wan, L.-J.; Yang, H.-B.;
Northrop, B.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 9268–9269.
(c) Wang, Z.; Medforth, C.; Shelnutt, J. J. Am. Chem. Soc. 2004, 126,
15954–15955.
(4) (a) Li, X.; Liu, D. R. Angew. Chem., Int. Ed. 2004, 43, 4848–4870.
(b) Diederich, F., Stang, P. J., Eds. Templated Organic Synthesis;
Wiley-VCH: Weinheim, 2000. (c) Arico´, F.; Badjic, J. D.; Cantrill,
S. J.; Flood, A. H.; Leung, K. C.-F.; Liu, Y.; Stoddart, J. F. Top. Curr.
Chem. 2005, 249, 203–259.
(2) (a) Hoeben, F.; Jonkheijm, P.; Meijer, E.; Schenning, A. Chem. ReV.
2005, 105, 1491–1546. (b) Saiki, Y.; Sugiura, H.; Nakamura, K.;
Yamaguchi, M.; Hoshi, T.; Anzai, J. J. Am. Chem. Soc. 2003, 125,
9268–9269. (c) Meyer, E.; Castellano, R.; Diederich, F. Angew. Chem.,
Int. Ed. 2003, 42, 1210–50. (d) Busch, D. H. Top. Curr. Chem. 2005,
249, 1–65. (e) Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am. Chem.
Soc. 2005, 127, 2637–2640.
(5) (a) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297,
590–593. (b) Krishnan-Ghosh, Y.; Balasubramanian, S. Angew. Chem.,
Int. Ed. 2003, 42, 2171–2173. (c) Leclaire, J.; Vial, L.; Otto, S.;
Sanders, J. K. M. Chem. Commun. 2005, 15, 1959–1961. (d) Hioki,
H.; Still, W. C. J. Org. Chem. 1998, 63, 904–905. (e) Otto, S.; Furlan,
R. L. E.; Sanders, J. K. M. J. Am. Chem. Soc. 2000, 122, 12063–
12064. (f) Corbett, P. T.; Sanders, J. K. M.; Otto, S. J. Am. Chem.
Soc. 2005, 127, 9390–9392. (g) Corbett, P. T.; Tong, L. H.; Sanders,
J. K. M.; Otto, S. J. Am. Chem. Soc. 2005, 127, 8902–8903.
(6) Wang, W.; Wang, L. Q.; Palmer, J.; Exarhos, G.; Li, A. D. Q. J. Am.
Chem. Soc. 2006, 128, 11150–11159.
(3) (a) Kieran, A. L.; Pascu, S. I.; Jarrosson, T.; Gunter, M. J.; Sanders,
J. K. M. Chem. Commun. 2005, 1842, 1844. (b) Stoddart, J. F.; Tseng,
H.-R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4797–4800. (c) Raehm,
L.; Kern, J.-M.; Sauvage, J.-P.; Hamann, C.; Palacin, S.; Bourgoin,
J.-P. Chem. Eur. J. 2002, 8, 2153–2162. (d) Kaiser, G.; Jarrosson, T.;
Otto, S.; Ng, Y.-F.; Bond, A. D.; Sanders, J. K. M. Angew. Chem.,
(7) Han, J. J.; Shaller, A. D.; Li, A. D. Q. J. Am. Chem. Soc. 2008, 130,
6974–6982.
9
10.1021/ja7111959 CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 8271–8279 8271