Docking Strategy for Kinase-Targeted Libraries
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 11 3131
Expert ReV. Anticancer Ther. 2002, 2, 161–168. (c) Smith, J. Erlotinib:
small-molecule targeted therapy in the treatment of non-small-cell lung
cancer. Clin. Ther. 2005, 27, 101513–101534.
and not to specific lead finding so that promiscuity is certainly
overestimated.
(7) (a) Lowrie, J. F.; Delisle, R. K.; Hobbs, D. W.; Diller, D. J. The
different strategies for designing GPCR and kinase targeted libraries.
Comb. Chem. High Throughput Screening 2004, 7, 495–510. (b)
Schnur, D.; Beno, B. R.; Good, A.; Tebben, A. Approaches to target
class combinatorial library design. Methods Mol. Biol. 2004, 275, 355–
378.
(8) (a) Trumpp-Kallmeyer, S.; Rubin, J. R.; Humblet, C.; Hamby, J. M.;
Hollis Showalter, H. D. Development of a binding model to protein
tyrosine kinases for substituted pyrido[2,3-d]pyrimidine inhibitors.
J. Med. Chem. 1998, 41, 1752–1763. (b) Diller, D. J.; Li, R. Kinases,
homology models, and high throughput docking. J. Med. Chem. 2003,
46, 4638–4647. (c) Naumann, T; Matter, H. Structural classification
of protein kinases using 3D molecular interaction field analysis of
their ligand binding sites: target family landscapes. J. Med. Chem.
2002, 45, 2366–2378.
(9) (a) Zheng, J.; Knighton, D. R.; Ten Eyck, L. F.; Karlsson, R.; Xuong,
N.; Taylor, S. S.; Sowadski, J. M. Crystal structure of the catalytic
subunit of cAMP-dependent protein kinase complexed with MgATP
and peptide inhibitor. Biochemistry 1993, 32, 2154–2161. (b) Knighton,
D. R.; Zheng, J. H.; Ten Eyck, L. F.; Ashford, V. A.; Xuong, N. H.;
Taylor, S. S.; Sowadski, J. M. Crystal structure of the catalytic subunit
of cyclic adenosine monophosphate-dependent protein kinase. Science
1991, 253, 407–414.
(10) Cheek, S.; Ginalski, K.; Zhang, H.; Grishin, N. V. A comprehensive
update of the sequence and structure classification of kinases. BMC
Struct. Biol. 2005, 5, 1–19.
(11) Honma, T.; Yoshizumi, T.; Hashimoto, N.; Hayashi, K.; Kawanishi,
N.; Fukasawa, K.; Takaki, T.; Ikeura, C.; Ikuta, M.; Suzuki-Takahashi,
I.; Hayama, T.; Nishimura, S.; Morishima, H. A novel approach for
the development of selective Cdk4 inhibitors: library design based on
locations of Cdk4 specific amino acid residues. J. Med. Chem. 2001,
44, 4628–4640.
(12) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.;
Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235–242.
(13) Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W. T.; Clarkson,
B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of Abelson
Tyrosine Kinase. Science 2000, 289, 1938–1942.
Conclusion
Our results confirm the feasibility of designing kinase targeted
libraries by selecting privileged heteroaromatic central cores and
taking advantage of the diversity generated by combinatorial
chemistry to explore the hydrophobic pocket and fine-tune
selectivity and potency. The method we have developed for
kinase binding prediction is based on an original and rapid
docking and scoring strategy using three different kinases and
is particularly adapted for library design and virtual screening.
This approach has shown its ability to identify promiscuous
kinase targeted cores which, when subjected to combinatorial
variations, can generate more or less selective hits for a large
variety of kinases. It has been validated by an experimental HTS
assay and could be applied to future libraries with a central core
being a privileged structure for interacting with the kinase ATP
site. Thanks to the rapidity and simplicity of the method,
thousands of virtual compounds can be filtered, allowing an
optimized selection of central heteroaromatic cores and of
hydrophobic partners which will increase the hit rate of kinase-
targeted libraries.
This efficient docking and scoring approach may easily be
modified or extended by selecting other crystallized kinases for
docking, and may be adapted to less drastic selections by, for
example, picking up compounds passing only some of the filters.
Supporting Information Available: Set of 123 kinase inhibitors
described in publications and patents which served to determine
the best scoring function values; NMR spectroscopy of the 27
building blocks that were selected and synthesized for the design
of the kinase targeted library; and structures of the 60 compounds
from the diaminopyrimidine library that were assayed against 41
kinases. This material is available free of charge via the Internet at
(14) Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. Structure of the
Epidermal Growth Factor Receptor kinase domain alone and in
complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002,
277, 46265–46272.
(15) Gray, N. S.; Wodicka, L.; Thunnissen, A. W. H.; Norman, T. C.;
Kwon, S.; Hernan Espinoza, F.; Morgan, D. O.; Barnes, G.; LeClerc,
S.; Meijer, L.; Kim, S-H.; Lockhart, D. J.; Schultz, P. G. Exploiting
chemical libraries, structure, and genomics in the search for kinase
inhibitors. Science 1998, 281, 533–538.
References
(1) Burnett, G.; Kennedy, E. P. The enzymatic phosphorylation of proteins.
J. Biol. Chem. 1954, 211, 969–980.
(2) (a) Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: an approach to
drug development. Science 1995, 267, 1782–1788. (b) Traxler, P.
Tyrosine kinases as targets in cancer therapy - successes and failures.
Expert. Opin. Ther. Targets. 2003, 2, 215–34.
(16) Manning, G; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S.
The protein kinase complement of the human genome. Science 2002,
298, 1912–1934.
(17) (a) Krejsa, C. M.; Horvath, D.; Rogalski, S. L.; Penzotti, J. E.; Mao,
B.; Barbosa, F.; Migeon, J. C. Predicting ADME properties and side
effects: The BioPrint approach. Curr. Opin. Drug. DiscoV. DeVel. 2003,
6, 470–480. (b) Froloff, N.; Hamon, V.; Dupuis, P.; Otto-Bruc, A.;
Mao, B.; Merrick, S.; Migeon, J. In: Jacoby, E. (Ed.), Chemogenomics
Knowledge-based Approaches to Drug DiscoVery, Imperial College
pages/ProductsServices/bioprintservices.asp.
(18) (a) Blumenkopf, T.; Mueller, E.; Roskamp, E. WO 0140215 (Pfizer,
2001). (b) Kath, J. C.; Luzzio, M. J. WO 04056786 (Pfizer, 2004) (c)
Thomas, A. P. WO 9515952 (Zeneca, 1995). (d) Feurer, A.; Bennabi,
S.; Heckroth, H.; Ergueden, J.; Schenke, T.; Bauser, M.; Kast, R.;
Stasch, J. P.; Stahl, E.; Muenter, K.; Lang, D.; Ehmke, H. WO
03106450 (Bayer, 2003). (e) Luk, K. C.; Rossman, P. L.; Scheiblich,
S.; So, S. S. U.S. Patent 7129351 (Hoffmann-La Roche Inc., 2004).
(19) (a) Haesslein, J. L.; Jullian, N. Recent Advances in Cyclin-Dependent
Kinase Inhibition. Purine-Based Derivatives as Anti-Cancer Agents.
Roles and Perspectives for the Future. Curr. Top. Med. Chem. 2002,
1, 1037–1050. (b) Breault, G. A.; Ellston, R. P. A.; Green, S.; James,
S. R.; Jewsbury, P. J.; Midgley, C. J.; Pauptit, R. A.; Minshull, C. A.;
Tucker, J. A.; Pease, J. E. Cyclin-dependent kinase 4 inhibitors as a
treatment for cancer. Part 2: identification and optimisation of
substituted 2,4-bis anilino pyrimidines. Bioorg. Med. Chem. Lett. 2003,
13, 2961–2966.
(3) (a) Gold, M. G.; Barford, D.; Komander, D. Lining the pockets of
kinases and phosphatases. Curr. Opin. Struct. Biol. 2006, 6, 693–
701. (b) Martin, B. T.; Strebhardt, K. Polo-like kinase 1: target and
regulator of transcriptional control. Cell Cycle 2006, 24, 2881–2885.
(c) Cowan-Jacob, S. W. Structural biology of protein tyrosine kinases.
Cell. Mol. Life Sci. 2006, 22, 2608–2625.
(4) (a) Druker, B. J.; Lydon, N. B. Lessons learned from the development
of an Abl tyrosine kinase inhibitor for chronic myelogenous leukaemia.
J. Clin. InVest. 2000, 105, 3–7. (b) Drews, J. Drug discovery: a
historical perspective. Science 2000, 287, 1960–1964. (c) Haluska,
P.; Adjei, A. A. Receptor tyrosine kinase inhibitors. Curr. Opin. InVest.
Drugs. 2001, 2, 280–286. (d) Fabbro, D.; Ruetz, S.; Buchdunger, E.;
Cowan-Jacob, S. W.; Fendrich, G.; Liebetanz, J.; Mestan, J.; O’Reilly,
T.; Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmermann, J.; Meyer, T.;
Caravatti, G.; Furet, P.; Manley, P. W. Protein kinases as targets for
anticancer agents: from inhibitors to useful drugs. Pharmacol. Ther.
2002, 93, 79–98.
(5) Fabian, M. A.; Biggs, W. H, 3rd; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen,
P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld,
R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias,
J. M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.;
Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A small molecule-kinase
interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005,
23, 29–36.
(6) (a) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec
(STI571, imatinib), a rationally developed, targeted anticancer drug.
Nat. ReV. Drug DiscoVery 2002, 1, 493–502. (b) Ranson, M.; Mansoor,
W.; Jayson, G. ZD1839 (IRESSA): a selective EGFR-TK inhibitor.
(20) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. AdV. Drug
DeliVery ReV. 2001, 46, 3–26.
(21) Cerius2, version 4.10; Accelrys Software Inc, San Diego, CA, USA,
2004.