T. Yamamoto et al. / Tetrahedron Letters 42 (2001) 8653–8656
8655
Scheme 3.
3. (a) Yamamoto, T. Bull. Chem. Soc. Jpn. 1999, 72, 621;
(b) Yamamoto, T.; Yamamoto, A. Chem. Lett. 1977, 353.
4. Yamamoto, T.; Nurulla, I. Jpn. J. Appl. Phys. 1999, 38,
892.
soluble in DMF; they were also partly soluble in NMP
and CF3COOH. GPC data (eluent=DMF containing
0.01 M LiBr) of PThDMAN and PHThDMAN gave a
number average molecular weights of 9.2 and 9.4×103,
respectively. Since the soluble part and the insoluble
part give the same IR spectrum, the fraction with lower
molecular weights is considered to be soluble in DMF.
Cyclic voltammogram of a cast film of PHThDMAN
on a Pt plate shows an oxidation peak at 1.05 V versus
Ag+/Ag in an CH3CN solution of [NBu4]PF6 (0.10 M).
PThAN and PHThAN were slightly soluble in
CF3COOH and DMF, and determination of their
molecular weights was not possible.
5. Spectroscopic and elemental analytical data for 1b and
the C–N coupling products. 1b: 1H NMR (CDCl3; 400
MHz) l 7.27 (m, 2H, J=4.0 Hz), 2.24 (d, 6H, J=1.4
Hz). Anal. calcd for C8H8Cl2N2: C, 47.32; H, 3.97; N,
13.92; Cl, 34.80. Found: C, 47.47; H, 4.03; N, 13.95; Cl,
1
34.48%. 2: H NMR (CDCl3; 400 MHz) l 7.17 (d, 0.6H,
J=2 Hz, cis-quinoide-H), 6.94 (dd, 1.4H, J=2. 8 Hz, 10
Hz, trans-quinoide-H), 6.89 (s, 2.8H, trans-ArH), 6.84 (s,
1.2H, cis-ArH), 6.48 (dd, 1.4H, J=2.8 Hz, 10 Hz, trans-
quinoide-H), 6.23 (d, 0.6H, J=2 Hz, cis-quinoide-H),
2.30 (s, 4.2H, trans-quinoide-CH3), 2.26 (s, 1.8H, cis-
quinoide-CH3), 1.91 (s, 8.4H, trans-quinoide-CH3), 1.87
(s, 3.6H, cis-quinoide-CH3). Anal. calcd for C24H26N2: C,
84.17; H, 7.65; N, 8.18. Found: C, 84.51; H, 7.74; N,
8.17%. 3: 1H NMR (CDCl3; 400 MHz) l 7.24 (d, 2H,
J=8.0 Hz), 7.20 (t, 2H, J=8.0 Hz), 7.07 (t, 2H, J=8.0
Hz), 6.64 (d, 2H, J=8.0 Hz), 6.54 (d, 2H, J=1.6 Hz),
2.15 (d, 6H, J=1.6 Hz, CH3), 2.12 (s, 6H, CH3). Anal.
calcd for C22H22N2: C, 84.04; H, 7.05; N, 8.91. Found: C,
As described above, polyaniline-type oligomers and
polymers can be prepared by the nickel complex-pro-
moted C–N coupling reaction. The proposed polycon-
densation method is expected to give various new
polyaniline-type polymers.
References
1
84.04; H, 7.16; N, 8.70%. 4: H NMR (CDCl3; 400 MHz)
l 7.18 (d, 4H, J=8.0 Hz), 6.74 (d, 4H, J=8.0 Hz), 6.68
(s, 2H), 2.37 (s, 6H, CH3), 2.12 (s, 6H, CH3). Anal. calcd
for C22H22N2: C, 84.04; H, 7.05; N, 8.91. Found: C,
1. E.g. (a) Kharasch, M. S.; Reimuth, O. Grignard Reactions
of Non-metallic Substances; Prentice-Hall: Englewood
Cliffs, NJ, 1954; (b) Tamao, K.; Kumada, M. J. Am.
Chem. Soc. 1972, 94, 4374; (c) Corriu, R. J. P.; Masse, J.
P. J. Chem. Soc., Chem. Commun. 1972, 144; (d) Kosugi,
M.; Shimizu, Y.; Migita, T. J. Organomet. Chem. 1977,
129, C36; (e) Morita, D. K.; Stille J. K.; Norton, J. R. J.
Am. Chem. Soc. 1995, 117, 8576; (f) Miyaura, N.; Suzuki,
A. Chem. Rev. 1995, 95, 2457; (g) Hirabayashi, K.; Mori,
A.; Kawashima, J.; Suguro, M.; Nishihara, Y.; Hiyama,
T. J. Org. Chem. 2000, 65, 5342.
2. (a) Mong, D. K.; Osakada, K.; Maruyama, T.;
Yamamoto, T. Macromol. Chem. 1992, 193, 1723; (b)
Kim, S.-B.; Harada, K.; Yamamoto, T. Macromolecules
1998, 31, 988; (c) Yamamoto, T.; Kim, S.-B.; Horie, M.
Jpn. J. Appl. Phys. 1999, 38, 273.
1
84.00; H, 7.28; N, 8.63%. 5: H NMR (CDCl3; 400 MHz)
l 7.87 (d, 2H, J=8.0 Hz), 7.81 (d, 2H, J=8.0), 7.69 (d,
2H, J=8.0), 7.54–7.44 (m, 6H), 6.79 (d, 2H, J=8.0 Hz),
2.14 (s, 6H, CH3). Anal. calcd for C28H22N2: C, 87.01; H,
5.74; N, 7.25. Found: C, 86.80; H, 5.85; N, 7.21%.
PHThDMAN: 1H NMR (CF3COOD, 400 MHz) l 7.2–
8.5 (br, 6H, Ph-H and N-H), 7.3 (br, 2H, Th-H), 3.5 (m,
4H, CH2), 2.9 (m, 12H, Ph-CH3), 1.9 (m, 16H, CH2), 1.2
(m, 6H, CH3). Anal. calcd for ((C18H22N2S)(C18H24N2S)·
H2O)n: C, 70.09; H, 7.84; N, 9.08. Found: C, 70.19; H,
7.34; N, 8.66%. PThDMAN: Anal. calcd for
((C12H10N2S)(C12H12N2S)·2H2O)n: C, 61.78; H, 5.62; N,
12.01. Found: C, 61.93; H, 5.61; N, 11.81%.
6. Willstatten, R.; Mayer, E. Chem. Ber. 1904, 37, 1494.