C O M M U N I C A T I O N S
(3) Schleyer, P. v. R. Chem. ReV. 2001, 101, 1115–1117.
(4) Astruc, D. In Modern Arene Chemistry; Astruc, D., Ed.; Wiley-VCH:
Weinheim, Germany, 2002; pp 1-19..
Direct comparison of partially conjugated “dienes” 4 and 5 with
fully delocalized 1,2-azaborine 2 highlights the clear contrast
between localized bonding in “dienes” 4 and 5 and delocalized
bonding in 2 (Table 1, bold entries). Upon forming the six
π-electron species 2, the N(1)-B bond lengthens, and both the
B-C(3) and C(6)-N(1) bonds shorten. This observation is
consistent with both resonance structures E′ and E′′ (Figure 1)
contributing to the overall structure of 1,2-azaborine E, which is
indicative of aromatic delocalization (E′′′).
Structures 1-5 reveal with unprecedented detail the geometrical
changes that occur from saturated 3 on its transition to the aromatic
heterocycle 2 via partially unsaturated 1, 4, and 5. The trends
described above are consistent with those seen when comparing
nonaromatic cyclohexene, and cyclohexadiene structures with the
delocalized aromatic benzene structure.
The boron in boron-containing heterocycles has been shown to
accept π-electrons from exocyclic amine substituents to varying
degrees, depending on the electronic properties of the heterocycle.42
The exocyclic nitrogen atom N(2) in 1-5 adopts a trigonal planar
structure (sum of the angles ) 360 ( 1°). The BsN(2) bond
distances in 1-5 remain constantly ∼1.48 Å (Table 1), consistent
with some π-bonding.43 However, as illustrated in Figure 2, the
orientation of the nitrogen lone pair in 1-5 permits only minimal
interaction with the boron atom. We believe that this distortion from
coplanarity results from unfavorable steric interactions between the
bulky N-t-Bu and B-NPh2 substituents.
In summary, we have successfully structurally characterized the
first examples of “pre-aromatic” 1,2-azaborine heterocycles, en-
abling the direct comparison of delocalized bonds of 1,2-azaborines
to their corresponding formal double and single bonds in nonaro-
matic systems. The comprehensive data presented in this study
provide an unprecedented look into the structural changes that occur
in six-membered BN-heterocycles on their road to aromaticity, and
they establish with little ambiguity that 1,2-azaborines such as 2
possess delocalized structures consistent with aromaticity.
(5) Carbon-Rich Compounds; Haley, M. M., Tykwinsky, R. R., Eds.; Wiley-
VCH: Weinheim, Germany, 2006.
(6) Liu, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2008, 47, 242–244.
(7) Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc. 1962, 84, 3782–3783.
(8) Davies, K. M.; Dewar, M. J. S.; Rona, P. J. Am. Chem. Soc. 1967, 89,
6294–6297.
(9) White, D. G. J. Am. Chem. Soc. 1963, 85, 3634–3636.
(10) For a review, see: Fritsch, A. J. Chem. Heterocycl. Compd. 1977, 30, 381–
440.
(11) For pioneering contributions, see: (a) Ashe, A. J., III; Fang, X. Org. Lett.
2000, 2, 2089–2091. (b) Ashe, A. J., III; Fang, X.; Fang, X.; Kampf, J. W.
Organometallics 2001, 20, 5413–5418.
(12) Ashe, A. J., III; Yang, H.; Fang, X.; Kampf, J. W. Organometallics 2002,
21, 4578–4580.
(13) Pan, J.; Kampf, J. W.; Ashe, A. J., III. Organometallics 2004, 23, 5626–
5629.
(14) Pan, J.; Kampf, J. W.; Ashe, A. J., III. Organometallics 2006, 25, 197–
202.
(15) Fang, X.; Yang, H.; Kampf, J. W.; Holl, M. M. B.; Ashe, A. J., III
Organometallics 2006, 25, 513–518.
(16) Pan, J.; Wang, J.; Holl, M. M. B.; Kampf, J. W.; Ashe, A. J., III
Organometallics 2006, 25, 3463–3467.
(17) Pan, J.; Kampf, J. W.; Ashe, A. J., III. Org. Lett. 2007, 9, 679–681.
(18) Pan, J.; Kampf, J. W.; Ashe, A. J., III. Organometallics 2008, 27, 1345–
1347.
(19) Emslie, D. J. H.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2003,
42, 1252–1255.
(20) Ghesner, I.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2004,
23, 3085–3087.
(21) Jaska, C. A.; Emslie, D. J. H.; Bosdet, M. J. D.; Piers, W. E.; Sorensen,
T. S.; Parvez, M. J. Am. Chem. Soc. 2006, 128, 10885–10896.
(22) Bosdet, M. J. D.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.; Parvez, M.
Org. Lett. 2007, 9, 1395–1398.
(23) Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Angew. Chem.,
Int. Ed. 2007, 46, 4940–4943.
(24) Jaska, C. A.; Piers, W. E.; McDonald, R.; Parvez, M. J. Org. Chem. 2007,
72, 5234–5243.
(25) Paetzold, P.; Stanescu, C.; Stubenrauch, J. R.; Bienmu¨ller, M.; Englert, U.
Z. Anorg. Allg. Chem. 2004, 630, 2632–2640.
(26) Marwitz, A. J. V.; Abbey, E. R.; Jenkins, J. T.; Zakharov, L. N.; Liu,
S.-Y. Org. Lett. 2007, 9, 4905–4908.
(27) Massey, S. T.; Zoellner, R. W. Int. J. Quantum Chem. 1991, 39, 784–804.
(28) Doerksen, R. J.; Thakkar, A. J. J. Phys. Chem. A 1998, 102, 4679–4686.
(29) Kranz, M.; Clark, T. J. Org. Chem. 1992, 57, 5492–5500.
(30) Fazen, P. J.; Burke, L. A. Inorg. Chem. 2006, 45, 2494–2500.
(31) Krygowski, T. M.; Cyranski, M. K. Chem. ReV. 2001, 101, 1385–1419.
(32) Katritzky, A. R.; Jug, K.; Oniciu, D. C. Chem. ReV. 2001, 101, 1421–
1449.
(33) Based on a search of the Cambridge Crystallographic Database (version
Acknowledgment. Support has been provided by University
of Oregon and the Medical Research Foundation of Oregon.
Funding for the University of Oregon Chemistry Research and
Instrumentation Services has been furnished in part by the National
Science Foundation (Grant CHE-0234965). HR-MS data were
obtained at the Mass Spectroscopy Facilities and Services Core of
the Environmental Health Sciences Center at Oregon State Uni-
versity. Financial support for this facility has been furnished in part
by the National Institute of Environmental Health Sciences, NIH
(P30 ES00210).
2007).
(34) Brown, R. C. D.; Satcharoen, V. Heterocycles 2006, 70, 705–736.
(35) Krompiec, S.; Pigulla, M.; Krompiec, M.; Baj, S.; Mrowiec-Bialon, J.;
Kasperczyk, J. Tetrahedron Lett. 2004, 45, 5257–5261.
(36) Hiraki, K.; Matasunaga, T.; Kawano, H. Organometallics 1994, 13, 1878–
1885.
(37) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139–2145.
(38) Two independent molecules are present in the asymmetric unit for structures
1, 2, and 4. For the sake of clarity, the data for one representative molecule
are selected for each of the structures. See Supporting Information for
details.
(39) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.;
Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1–S17.
(40) Based on a search of the Cambridge Crystallographic Database (version
2007). For example, see: von Essen, R.; Frank, D.; Su¨nnemann, H. W.;
Vidovic, D.; Magull, J.; de Meijere, A. Chem.sEur. J. 2005, 11, 6583–
6592.
(41) Based on a search of the Cambridge Crystallographic Database (version
2007). For example, see: Lee, S. I.; Park, S. Y.; Park, J. H.; Jung, I. G.;
Choi, S. Y.; Chung, Y. K.; Lee, B. Y. J. Org. Chem. 2006, 71, 91–96.
(42) Ashe, A. J., III; Kampf, J. W.; Mu¨ller, C.; Schneider, M. Organometallics
1996, 15, 387–393.
Supporting Information Available: Experimental procedures for
the synthesis of compounds 1-5, compound characterization data, CIF
files for structures 1-5. This material is available free of charge via
(43) For a comparison with a diphenylamino-substituted boratabenzene, see:
(a) Hoic, D. A.; DiMare, M.; Fu, G. C. J. Am. Chem. Soc. 1997, 119,
7155–7156.
References
(1) Correspondence concerning X-ray crystallography should be directed to
Lev Zakharov. E-mail: lev@uoregon.edu.
(2) Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209–218.
JA8024966
9
7252 J. AM. CHEM. SOC. VOL. 130, NO. 23, 2008