cyclic peptide natural products.6 However, current prep-
arations of boronated amino acids are somewhat limited
due to the incompatibility of the boronic acid moiety/
derivatives with the reagents and catalysts used in many
synthetic methods, intermediate organometallic species,
and reagents employed in their preparation.7
In accordance with the above-reported renewed interest
in the design and synthesis of new boron-containing amino
acids as well as the central role that tryptophan plays
particularly in peptides and proteins, new, simple, and
reliable methods for the efficient synthesis of tryptophan
analogues containing boronic acids on the indole ring are
highly desirable (Figure 1). Tryptophan derivatives have
been previously synthesized by using enzymatic and chem-
ical methods.13
Tryptophan, an essential amino acid, functions asboth a
building block in protein biosynthesis and a biochemical
precursor; it plays a crucial role in a large number of
biochemical processes carried out by functional proteins.
It is abundantly found in most biologically active peptides
that exhibit various physiological properties, in particular
hormonal, antimicrobial, and anticancer activities.8 Tryp-
tophan analogues are also important building blocks for
the synthesis of peptidomimetics, natural products, and
biologically active compounds.9 Among tryptophans,
those which are substituted at the 4- and 5-positions
are particularly interesting because they might be useful
intermediates for the synthesis of naturally occurring (À)-
aurantioclavine, serotonin tryptamine, and indole alka-
loids, such as the ergot alkaloids, indolactam V, Chuang-
xinmycin, and CC-1065, and also unnatural derivatives
suchastriptans.10 Furthermore, 4-substituted tryptophans
are particularly challenging substrates for steric and elec-
tronic reasons since most electrophilic attacks prefer the
2- or 7-position of tryptophan.11 This problem has been
circumvented by a wide variety of ingenious methods, but
all suffer from low efficiency and practicability.12
Figure 1. Possible approaches to boronated tryptophanes: path
A (halogenÀmetal exchange), path B (Pd-catalyzed boronation),
and path C (Ir-catalyzed CÀH boronation).
(7) For a general overview of boronic acids, see: (a) Boronic Acids:
Preparation, Applications in Organic Synthesis and Medicine; Hall, D.,
Ed.; Wiley-VCH: 2005. For new approaches to prepare boronate with highly
reactive functionalities, see: (b) Merino, P.; Tejero, T. Angew. Chem., Int.
Ed. 2010, 49, 7164. For Miyaura cross-coupling reaction, see:
(c) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60,
7508. (d) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 2007, 46, 5359. For recent reviews of iridium-catalyzed direct
boronation, see: (e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (f) Hartwig,
J. F. Chem. Soc. Rev. 2011, 40, 1992.
Based on these considerations and taking into account
the wide tolerance of the boronic acid ester, we envisioned
the Lewis acid FriedelÀCrafts alkylation of indoles with a
dehydroamino acid for the synthesis of 4- or 5-boronated
tryptophan derivatives.14
So, when we subjected the easily accessible boronated
indoles (1a,b)7c to FriedelÀCrafts conditions with N-acetyl
dehydroalanine methyl ester (2) we obtained the boron-
ated protected tryptophans 3a,b in excellent yields with
high regio- and chemoselectivity (Scheme 1).
To the best of our knowledge, this is the first reported
example of direct FriedelÀCrafts alkylation of boronated
indoles. Notably, the widely used lithiation/trap with
(8) (a) Chan, D. I.; Prenner, E. J.; Vogel, H. J. Biochim. Biophys. Acta
2006, 1184. (b) Munoz, A.; Lopez-Garcia, B.; Perez-Paya, E.; Marcos,
J. F. Biochem. Biophys. Res. Commun. 2007, 354, 172. (c) Yu, H.-Y.;
Huang, K.-C.; Yip, B.-S.; Tu, C.-H.; Chen, H.-L.; Czeng, H.-T.; Cheng,
J.-W. ChemBioChem 2010, 11, 2273.
(9) (a) Wen, S. J.; Yao, Z. J. Org. Lett. 2004, 6, 2721. (b) Miyake,
F. Y.; Yakushijin, K.; Horne, D. A. Angew. Chem., Int. Ed. 2004, 43,
5357. (c) Feldman, K. S.; Karatjas, A. G. Org. Lett. 2004, 6, 2849.
(d) Gonzalez-Vera, J. A.; Garcia-Lopez, M. T.; Herranz, R. Org. Lett.
2004, 6, 2641. (e) Miller, A.; Martin, S. F. Org. Lett. 2007, 9, 1113.
(10) Lead references, see: (a) Takano, S.; Nishimura, T.; Ogasawara,
K. Heterocycles 1977, 6, 1167. (b) The Alkaloids: Ergot Alkaloids; Brossi,
A., Ed.; Academic Press: San Diego, 1990; Vol. 38, p 1. (c) Boger, D. L.;
Yun, W.; Teegarden, B. R. J. Org. Chem. 1992, 57, 2873. (d) Hopkins,
S. J. Drugs Today 1992, 28, 155. (e) Semmelhack, M. F.; Rhee, H.
Tetrahedron Lett. 1993, 34, 1399. (f) Ishibashi, H.; Tabata, T.; Hanaoka,
K.; Iriyama, H.; Akamatsu, S.; Ikeda, M. Tetrahedron Lett. 1993, 34,
489. (g) Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Tetrahedron
Lett. 2004, 45, 3123. (h) Krishnan, S.; Bagdanoff, J. T.; Ebner, D. C.;
Ramtohul, Y. K.; Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2008,
130, 13745. (i) Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004.
(11) Sundberg, R. J. The Chemistry of Indoles; Academic Press:
New York, 1970.
(13) (a) Konda-Yamada, Y.; Okada, C.; Yoshida, K.; Umeda, Y.;
Arima, S.; Sato, N.; Kai, T.; Takayanagi, H.; Harigaya, Y. Tetrahedron
2002, 58, 7851. (b) Goss, R. J. M.; Newill, P. L. A. Chem. Commun. 2006,
47, 4924. (c) Bittner, S.; Scherzer, R.; Harlev, E. Amino Acids 2007, 33,
19. (d) Sui, Y.; Liu, L.; Zhao, J. L.; Wang, D.; Chen., Y. J. Tetrahedron
Lett. 2007, 48, 3779. (e) Blaser, G.; Sanderson, J. M.; Batsanov, A. S.;
Howard, J. A. K. Tetrahedron Lett. 2008, 49, 2795. (f) E. Yokoyama, Y.;
Nakakoshi, M.; Okuno, H.; Sakamoto, Y.; Sakurai, S. Magn. Reson.
Chem. 2010, 48, 811. For an alternative route to completely protected
boronated trypthophanes, see: (g) Prieto, M.; Mayor, S.; Lloyd-
Williams, P.; Giralt J. Org. Chem. 2009, 74, 9202.
(14) (a) Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.;
Piersanti, G. J. Org. Chem. 2008, 73, 5654. (b) Lucarini, S.; Bartoccini,
F.; Battistoni, F.; Diamantini, G.; Piersanti, G.; Righi, M.; Spadoni, G.
Org. Lett. 2010, 12, 3844.
(15) Vazquez, E.; Davies, I. W.; Payack, J. F. J. Org. Chem. 2002, 67,
7551 and references therein.
(12) (a) Chauder, B.; Larkin, A.; Snieckus, V. Org. Lett. 2002, 4, 815.
(b) Li, L.; Martins, A. Tetrahedron Lett. 2003, 44, 5987. (c) Chae, J.;
Buchwald, S. L. J. Org. Chem. 2004, 69, 3336. (d) Davies, H. M. L.;
Manning, J. R. J. Am. Chem. Soc. 2005, 128, 1060. For metal-catalyzed
processes: (e) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2006, 128, 1058.
(f) Barluenga, J.; Jimenez-Aquino, A.; Aznar, F.; Valdes, C. J. Am.
Chem. Soc. 2009, 131, 4031.
Org. Lett., Vol. 14, No. 2, 2012
601