R,ꢀ-unsaturated aldehydes remain elusive.11,12 Despite numer-
ous publications dealing with organocatalytic reactions, only
a few examples have focused on the domino (or tandem)
reaction as the strategic tactic.13 A chef d’oeuvre was
established by Enders et al. in a triple cascade organocatalytic
Michael-Michael-aldol reaction of a linear aldehyde, an
R,ꢀ-unsaturated aldehyde, and nitrostyrene for the synthesis
of tetrasubstituted cyclohexenecarbaldehydes with four ste-
reogenic centers in high diastereo- and enantioselectivity.14
In conjunction with our continuing efforts to explore new
organocatalytic annulations,15 we embarked upon a domino
Table 1. Screening of the Catalyst, Solvent, and Reaction
Conditions for the Tandem Michael-Aldol Condensationa
(5) For recent examples, see: (a) Betancort, J. M.; Barbas, C. F. Org.
Lett. 2001, 3, 3737. (b) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611.
(c) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas,
C. F. Synthesis 2004, 1509. (d) Kotrusz, P.; Toma, S.; Schmalz, H.-G.;
Adler, A. Eur. J. Org. Chem. 2004, 1577. (e) Andrey, O.; Alexakis, A.;
Tomassini, A.; Bernardinelli, G. AdV. Synth. Catal. 2004, 346, 1147. (f)
Planas, L.; Perard-Viret, J.; Royer, J. Tetrahedron: Asymmetry 2004, 15,
2399. (g) Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44,
1369. (h) Mosse, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org.
Lett. 2006, 8, 2559. (i) Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006,
8, 3077. (j) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem.,
Int. Ed. 2005, 44, 4212. (k) Zu, L.; Li, H.; Wang, J.; Yu, X.; Wang, W.
Tetrahedron Lett. 2006, 47, 5131. (l) Li, Y.; Liu, X.-Y.; Zhao, G.
Tetrahedron: Asymmetry 2006, 17, 2034. (m) Mosse, S.; Alexakis, A. Org.
Lett. 2006, 8, 3577. (n) Luo, S.; Mi, X.; Liu, S.; Xu, H.; Cheng, J.-P. Chem.
Commun. 2006, 35, 3687. (o) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.;
Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093. (p) Palomo, C.; Vera,
S.; Mielgo, A.; Gomez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984.
(q) Mosse, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett.
2006, 8, 2559. (r) Hong, B.-C.; Nimje, R. Y.; Wu, M.-F.; Sadani, A. A.
Eur. J. Org. Chem. 2008, 1449.
time yield
ee
entry cat.
additiveb solvent (h)
(%)c
drd
(%)f,g
1
I
CH3CN 72
8
85:15 n.d.
2
I
TEA
CH3CN
8
19 90:10 n.d.
30 90:10 85h
55 67:33 43h/44i
66 >99:1 89h
3
II
HOAc
HOAc
HOAc
CH3CN 12
4
II
toluene
CH2Cl2
6
6
4
5
II
(6) (a) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2003, 125, 1192. (b) Paras, N. A.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2002, 124, 7894. (c) Austin, J. F.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2002, 124, 1172. (d) Paras, N. A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2001, 123, 4370.
6
II
C6H5CO2H CH2Cl2
HFIP
62 99:1
53 95:5
88h
80h
7
II
CH2Cl2 24
Et2O 10
8
II
31 80:20 63h
9
II
CH2Cl2 10
CH3CN 12
CH2Cl2 72
CH3CN 48
CH3CN 48
CH3CN 48
CH3CN 30
43 99:1
∼0e n.a.
10 n.d.
89h
n.a.
n.d.
n.a.
n.a.
n.a.
(7) (a) Brandau, S.; Landa, A.; Franze´n, J.; Marigo, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2006, 45, 4305. (b) Wu, F.; Hong, R.; Khan, J.;
Liu, X.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 4301.
10
11
12
13
14
15
III
IV
V
VI
VII
VIII
HOAc
HOAc
∼0e n.a.
∼0e n.a.
∼0e n.a.
(8) Gotoh, H.; Masui, R.; Ogino, H.; Shori, M.; Hayashi, Y. Angew.
Chem., Int. Ed. 2006, 45, 6853.
(9) Enders, D.; Bonten, M. H.; Raabe, G. Synlett 2007, 885.
(10) For Michael addition of aldehydes to alkyl vinyl ketones, see: (a)
Hong, B.-C.; Chen, F.-L.; Chen, S.-H.; Liao, J.-H.; Lee, G.-H. Org. Lett.
2005, 7, 557. (b) Chi, Y.; Gellman, S. H. Org. Lett. 2005, 7, 4253. (c)
Franze´n, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (d) Nicolaou, K. C.;
Sarlah, D.; Shaw, D. M. Angew. Chem., Int. Ed. 2007, 46, 4708.
(11) For an intramolecular example, see:(a) Fonseca, M. T. H.; List, B.
Angew. Chem., Int. Ed. 2004, 43, 3958. (b) A tandem reaction involving
the intermolecular conjugate addition of a nitroaldehyde intermediate (γ-
position of aldehyde) to an R,ꢀ-unsaturated aldehyde (nitroalkane conjugate
addition) was reported by Enders, see ref 14.
52 60:40 -6h/25i
a The reactions were performed in 0.25 M 2a at 25 °C. b The same
equivalents of catalysts were applied. c Isolated yields. d Diastereomeric ratio
(dr) of trans/cis, determined by 1H NMR prior to workup. e No reaction
and recovery of cinnamaldehyde. f Enantiomeric excess (ee) determined by
HPLC with chiral column (Chiracel OD). g ee were measured by GC-MS
(Shimadzu QP 5000, chiral capillary column, γ-cyclodextrin trifluoroacetyl,
Astec type G-TA, size 30 m × 0.25 mm, flow rate 24 mL/min, temperature
range: 100-150 °C, gradient: 3 °C /min). h ee of trans-3a. i ee of cis-3a.
(12) For a recent example of organocatalytic conjugate addition of
aldehyde to maleimides, see: Zhao, G.-L.; Xu, Y.; Sunde´n, H.; Eriksson,
L.; Sayah, M.; Co´rdova, A. Chem. Commun. 2007, 734.
strategy in the tandem Michael-aldol condensation. Herein,
we report the development of a new domino organocatalytic
conjugate addition and aldol condensation for the diastereo-
and enantioselective synthesis of highly functionalized cy-
clohexene derivatives.
(13) For examples, see: (a) Huang, Y.; Walji, A. M.; Larsen, C. H.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. (b) Wang, W.;
Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354. (c) Li, H.;
Zu, L.; Xie, H.; Wang, J.; Jiang, W.; Wang, W. Org. Lett. 2007, 9, 1833.
(d) Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jørgensen, K. A. Chem.
Commun. 2006, 4928. (e) Guillena, G.; Ramo´n, D. J.; Yus, M. Tetrahedron:
Asymmetry 2007, 18, 693. (f) Rios, R.; Sunde´n, H.; Ibrahem, I.; Zhao, G.-
L.; Co´rdova, A. Tetrahedron Lett. 2006, 47, 8679. (g) Sunde´n, H.; Rios,
R.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Co´rdova, A. AdV. Synth. Catal.
2007, 349, 827.
Initially, to a solution of glutaraldehyde (1a)16 and
cinnamaldehyde (2a) in CH3CN (4 mL, 0.25 M) was added
L-proline (0.5 equiv), and the solution was stirred at 25 °C
for 72 h. As expected, the tandem Michael-aldol condensa-
tion product 3a was obtained in trace amount (8% yield,
Table 1, entry 1). Most of the glutaraldehyde was consumed
(decomposed), but much of the cinnamaldehyde remained.
(14) (a) Enders, D.; Hu¨ttl, M. R. M.; Grondal, C.; Raabe, G. Nature
2006, 441, 861. (b) Enders, D.; Hu¨ttl, M. R. M.; Runsink, J.; Raabe, G.;
Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467.
(15) For our previously efforts on the organocatalytic formal [3 + 3]
and [4 + 2] annulation, and its application in natural products synthesis,
see:(a) Hong, B. C.; Wu, M. F.; Tseng, H. C.; Huang, G. F.; Su, C. F.;
Liao, J. H. J. Org. Chem. 2007, 72, 8459. (b) Hong, B. C.; Tseng, H. C.;
Chen, S. H. Tetrahedron 2007, 63, 2840. (c) Hong, B. C.; Nimje, R. Y.;
Yang, C. Y. Tetrahedron Lett. 2007, 48, 1121. (d) Hong, B. C.; Wu, M. F.;
Tseng, H. C.; Liao, J. H. Org. Lett. 2006, 8, 2217. (e) ref. 5r.
(16) Extracted and concentrated from commercially available 25%
aqueous solution.
2346
Org. Lett., Vol. 10, No. 12, 2008