U. Scho¨n et al. / Tetrahedron Letters 49 (2008) 3204–3207
3207
2. Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Bsaldisera, L.; Laberge,
L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279–282.
3. Giguere, R.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron
Lett. 1986, 27, 4945–4948.
vessels, processing volume 0.5–5 mL, max pressure 20 bar, IR
temperature sensor on the outside of the reaction vessel). Experimen-
tal details: 5 mL sample volume, magnetic stirring, sealed 10 mL
reaction vessel (glass); rapid cooling with compressed air.
4. Reviews on microwave-assisted synthesis: (a) Cablewski, T.; Faux, A.
F.; Strauss, C. R. J. Org. Chem. 1994, 59, 3408–3412; (b) Microwaves
in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH, 2002; (c) Kappe, C.
O. Curr. Opin. Chem. Biol. 2002, 6, 314–320; (d) Desai, B.; Kappe, C.
O. In Kirschning, A., Ed.; Immobilized Catalysts Top. Curr. Chem.
2004, 242, 177–208; (e) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43,
6250–6284; (f) Hoz, A.; Ortiz, A. D.; Moreno, A. Chem. Soc. Rev.
2005, 34, 164–178; (g) Kappe, C. O.; Stadtler, A. Microwaves in
Organic and Medicinal Chemistry; Wiley-VCH, 2005.
11. Anton Paar Synthos 3000: A multimode microwave instrument with
two magnetrons (1400 W continuously delivered output power)
dedicated for batch scale-up that allows processing of volumes of
up to 1 L in a variety of different rotor systems (8, 16, 48, 64).
Experimental details: 48 Â 5 mL sample volume, magnetic stirring;
temperature measurement in one reference vessel via an internal gas
balloon thermometer, surface temperature monitoring of 16 individ-
ual vessels by IR thermography, sealed 50 mL PFA liner; cooling by
venting air through cooling gaps.
5. Gronnow, M. J.; White, R. J.; Clark, J. H.; Macquarrie, D. J. Org.
Process Res. Dev. 2005, 9, 516–518.
12. (a) Kunz, U.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Wen,
H.-W.; Jas, G.; Kirschning, A. Eur. J. Org. Chem. 2004, 3601–3610;
(b) Mennecke, K.; Cecilia, R.; Glasnov, T. N.; Gruhl, S.; Vogt, C.;
Feldhoff, A.; Larrubia Vargas, M. A.; Kappe, C. O.; Kunz, U.;
Kirschning, A. Adv. Synth. Catal. 2008, 350, 717–730.
13. Herrero, M. A.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008,
73, 36–47.
14. Yields are based on the product peak areas as compared to total peak
area of a LC/MS chromatogram (ELSD). The given yields are
calculated from a analysis of filtered reaction mixtures and therefore
should be used as an indication of the product yield.
15. Palladium precatalyst (0.02 mmol) was added to a reaction mixture
consisting of boronic acid derivative (0.4 mmol), aryl halide
(0.2 mmol) and K2CO3 (0.6 mmol) in 5 mL DME/H2O/EtOH
(7:3:2). The mixture was subjected to microwave irradiating condi-
tions (EmrysTM Optimizer from Personal Chemistry). The stirred
reaction mixture was heated for 300 s at 110 °C and then cooled. The
catalyst was removed by filtration over CeliteTM and washed with
diethyl ether (5 mL). The organic phase was dried with sodium sulfate
and concentrated under reduced pressure. The outcome of the
reaction was monitored by LC–MS-analysis. In case of the parallel
setup (Synthos 3000 from Anton Paar, Rotor 48MF50) the reaction
was heated for 420 s at 110 °C. For NMR-characterization the crude
product was purified by column chromatography. The isolated yields
obtained are 3a = 90%; 3b = 95%; 3c = 85%.
6. Reviews: (a) Kremsner, J. M.; Stadler, A.; Kappe, C. O. Top. Curr.
Chem. 2006, 266, 223–278; (b) Leadbeater, N. E.; Schmink, J. R.
Tetrahedron 2007, 63, 6764–6773; (c) Moseley, J. D.; Lenden, P.;
Lockwood, M.; Ruda, K.; Sherlock, J.-P.; Thomson, A. D.; Gilday, J.
P. Org. Process Res. Dev. 2008, 12, 30–40; (d) Bowman, M. D.;
Holcomb, J. L.; Kormos, L. K.; Leadbeater, N. E.; Williams, V. A.
Org. Process Res. Dev. 2008, 12, 41–57.
7. (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11,
513–519; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–
2483; (c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168; (d)
Negishi, E. A. Handbook of Organopalladium Chemistry for Organic
Synthesis; Wiley-Interscience: New York, 2002; (e) Miyaura, N.
Cross-Coupling Reactions; Springer: New York, 2002.
8. (a) Darses, S.; Genet, J.-P. Eur. J. Org. Chem. 2003, 4313–4327;
Review: (b) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–
286.
9. (a) Solodenko, W.; Scho¨n, U.; Messinger, J.; Glinschert, A.; Kirsch-
ning, A. Synlett 2004, 10, 1699–1702; (b) Dawood, K. M.; Kirschning,
A. Tetrahedron 2005, 61, 12121–12130; (c) Solodenko, W.; Mennecke,
K.; Vogt, C.; Gruhl, S.; Kirschning, A. Synthesis 2006, 1873–1881; (d)
Brochwitz, C.; Feldhoff, A.; Kunz, U.; Vaultier, M.; Kirschning, A.
Lett. Org. Chem. 2006, 3, 442–446; (e) Dawood, K. M.; Solodenko,
W.; Kirschning, A. ARKIVOC 2007, 104–124.
10. Biotage Emrys Optimizer: A fully automated singlemode (300 W)
microwave reactor that incorporates a gripper for robotic vessel
transfer. The system is used for the efficient optimization of reaction
conditions and for the unattended generation of libraries (sealed
16. Recently, in a mechanistic study on modern palladium catalyst
precursors the use of Pd(II)EnCat with microwave heating in cationic
Heck reactions was investigated: Svennebring, A.; Sjo¨berg, P. J. R.;
Larhed, M.; Nilsson, P. Tetrahedron 2008, 64, 1808–1812.