3220
F. Mincione et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3216–3221
Compound 1b incorporating a simple 4-carboxybenzenesulf-
and XII (antiglaucoma targets) and IX (antitumor target). Some of
the new compounds showed effective in vitro inhibition of the tar-
get isoforms involved in glaucoma, and the X-ray crystal structure
of one of them also revealed factors associated with the strong
inhibitory activity. In an animal model of ocular hypertension,
one of the new compounds was twice more effective than dorzola-
mide in reducing elevated intraocular pressure typical of this dis-
ease, anticipating the potential of such compounds for the
treatment of glaucoma or elevated IOP.
onamide scaffold and the C4 nitrate ester moiety was chosen for
in vivo studies, due to the good inhibition observed against the
antiglaucoma target isoforms hCA II, IV and XII (KIs in the range
of 18–44 nM, Table 1) and high water solubility (in the range of
2%), compared to other sulfonamides prepared in this study (e.g.,
1f was a better in vitro CAI compared to 1b but had a very low
water solubility (>0.3%), which made it difficult to formulate the
drug for topical administration). Furthermore, 1b is not a strong
inhibitor of hCA I and IX, enzymes not involved in glaucoma. In
the previous work13 we have showed that in vivo the sulfonamides
incorporating nitrate ester moieties release NO and sulfonamides
which both have beneficial effects on the control of intraocular
pressure (IOP).
Table 3 shows the IOP data of hypertensive New Zealand rabbits
treated topically with vehicle, the standard drug dorzolamide (2%),
the NO-donating nitrate ester without CA inhibitory properties iso-
sorbide mononitrate 12 (2%), as well as the NO-donating sulfon-
amide 1b reported here (2%). It may be observed that after
induction of ocular hypertension with carbomer, the IOP of the
experimental animals raised from basal values of 14.7–18.2 mm
Hg to values of 32.4–35.4 mm Hg. Treatment with vehicle had no
effect on the IOP, whereas treatment with DZA led to a maximal
IOP decrease of 7.4 mm Hg, at 60 min post-administration of the
drug directly into the eye (Table 3). Treatment with the nitrate es-
ter 12 had a similar effect, with an IOP reduction of 6.8 mm Hg, but
the maximal effect was observed at 30 min post-administration of
the eye drops. The NO-donating sulfonamide 1b at 2% showed a
very strong IOP lowering, of 15.7 mm Hg, the maximal effect being
observed at 1 h post-administration, as for the standard drug DZA.
These data clearly show that the NO-donating sulfonamide 1b is
very effective in reducing elevated IOP in this animal model of
glaucoma, with an IOP reduction more than twice that shown by
the clinically used drug DZA. Its effect is a summation of the sul-
fonamide CA inhibition effect (as exemplified by the dorzolamide
IOP reduction) and the NO-mediated effects (as exemplified by
the non-CA inhibiting nitrate 12).
References and notes
1. (a) Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168; (b) Supuran, C. T. Bioorg. Med.
Chem. Lett. 2010, 20, 3467; (c) Ebbesen, P.; Pettersen, E. O.; Gorr, T. A.; Jobst, G.;
Williams, K.; Kienninger, J.; Wenger, R. H.; Pastorekova, S.; Dubois, L.; Lambin,
P.; Wouters, B. G.; Supuran, C. T.; Poellinger, L.; Ratcliffe, P.; Kanopka, A.;
Görlach, A.; Gasmann, M.; Harris, A. L.; Maxwell, P.; Scozzafava, A. J. Enzyme
Inhib. Med. Chem. 2009, 24, 1.
2. (a) Kaunisto, K.; Parkkila, S.; Rajaniemi, H.; Waheed, A.; Grubb, J.; Sly, W. S.
Kidney Int. 2002, 61, 2111; (b) Supuran, C. T. Carbonic Anhydrases as Drug
Targets—General Presentation. In Drug Design of Zinc-Enzyme Inhibitors:
Functional, Structural, and Disease Applications; Supuran, C. T., Winum, J. Y.,
Eds.; Wiley: Hoboken (NJ), 2009; pp 15–38; (c) Alterio, V.; Hilvo, M.; Di Fiore,
A.; Supuran, C. T.; Pan, P.; Parkkila, S.; Scaloni, A.; Pastorek, J.; Pastorekova, S.;
Pedone, C.; Scozzafava, A.; Monti, S. M.; De Simone, G. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 16233.
3. (a) Wagner, J. M.; Avvaru, B. S.; Robbins, A. H.; Scozzafava, A.; Supuran, C. T.;
McKenna, R. Bioorg. Med. Chem. 2010, 18, 4873; (b) Pacchiano, F.; Aggarwal, M.;
Avvaru, B. S.; Robbins, A. H.; Scozzafava, A.; McKenna, R.; Supuran, C. T. Chem.
Commun. (Camb.) 2010, 46, 8371; (c) Pastorekova, S.; Parkkila, S.; Pastorek, J.;
Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2004, 19, 199; (d) Franchi, M.; Vullo,
D.; Gallori, E.; Pastorek, J.; Russo, A.; Scozzafava, A.; Pastorekova, S.; Supuran, C.
T. J. Enzyme Inhib. Med. Chem. 2003, 18, 333.
4. (a) Winum, J. Y.; Rami, M.; Scozzafava, A.; Montero, J. L.; Supuran, C. Med. Res.
Rev. 2008, 28, 445; (b) Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev.
2003, 23, 146.
5. (a) De Simone, G.; Di Fiore, A.; Menchise, V.; Pedone, C.; Antel, J.; Casini, A.;
Scozzafava, A.; Wurl, M.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2005, 15, 2315;
(b) Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David, S.; Waldeck, H.;
Schafer, S.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2003, 13, 841; (c) Abbate, F.;
Casini, A.; Owa, T.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2004,
14, 217; (d) Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med.
Chem. Lett. 2004, 14, 2357; (e) Vullo, D.; Franchi, M.; Gallori, E.; Pastorek, J.;
Scozzafava, A.; Pastorekova, S.; Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2003,
18, 403.
6. (a) Winum, J.-Y.; Casini, A.; Mincione, F.; Starnotti, M.; Montero, J.-L.;
Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2004, 14, 225; (b)
Menabuoni, L.; Scozzafava, A.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran,
C. T. J. Enzyme Inhib. 1999, 14, 457; (c) Scozzafava, A.; Menabuoni, L.; Mincione,
F.; Briganti, F.; Mincione, G.; Supuran, C. T. J. Med. Chem. 1999, 42, 2641.
7. Carta, F.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Kaila, K.; Supuran, C. T. J.
Med. Chem. 2010, 53, 5511.
In conclusion, we report here a new series of sulfonamides
incorporating NO-donating moieties of the ester type in their mol-
ecule. Several sulfonamide scaffolds have been used to synthesize
these derivatives, which have been investigated for the inhibition
of five physiologically relevant isoforms, hCA I (offtarget), II, IV
8. (a) Maresca, A.; Temperini, C.; Vu, H.; Pham, N. B.; Poulsen, S. A.; Scozzafava, A.;
Quinn, R. J.; Supuran, C. T. J. Am. Chem. Soc. 2009, 131, 3057; (b) Maresca, A.;
Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C. T. J. Med.
Chem. 2010, 53, 335.
9. (a) Maresca, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2010, 20, 4511; (b)
Maresca, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2010, 20,
7255.
Table 3
Intraocular pressure (IOP) lowering effects of 2% dorzolamide DZA, isosorbide
mononitrate 12, and sulfonamide 1b in carbomer-induced ocular hypertensive New
Zealand white rabbits
Compound* Basal IOP After
mm Hg carbomer
mm Hg
Post-
DD IOP** Tmax
***
10. Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett.
2008, 18, 1583.
treatment
(À)mm
min
IOP#
Hg
11. (a) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T. J. Enzyme Inhib. Med.
Chem. 2004, 19, 199; (b) Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C. T.;
De Simone, G. X-ray Crystallography of CA Inhibitors and its Importance in
Drug Design. In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and
Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, 2009;
pp 73–138.
mm Hg
Vehicle
DZA
12
17.9 0.3 32.4 1.3
14.7 0.9 35.4 0.8
16.8 0.3 35.3 1.2
18.2 0.7 34.2 1.4
31.8 1.9
27.1 1.2
28.4 1.6
20.6 1.8
0
0.9
—
7.4 1.9 60
6.8 0.5 30
15.7 1.8 60
1b
12. (a) Wistrand, P. J.; Lindqvist, A. In Carbonic Anhydrase—From Biochemistry and
Genetics to Physiology and Clinical Medicine; Botrè, F., Gros, G., Storey, B. T., Eds.;
VCH: Weinhein, 1991; pp 352–378; (b) Mincione, F.; Scozzafava, A.; Supuran,
C. T. Antiglaucoma Carbonic Anhydrase Inhibitors as Ophthalomologic Drugs.
In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease
Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken (NJ), 2009; pp
139–154.
13. Steele, R. M.; Batugo, M. R.; Benedini, F.; Biondi, S.; Borghi, V.; Carzaniga, L.;
Impagnatiello, F.; Miglietta, D.; Chong, W. K. M.; Rajapakse, R.; Cecchi, A.;
Temperini, C.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2009, 19, 6565.
14. (a) Impagnatiello, F.; Borghi, V.; Gale, D. C.; Batugo, M.; Gazzetta, M.; Brambilla,
S.; Carreiro, S. T.; Chong, W. K.; Prasanna, G.; Chiroli, V.; Ongini, E.; Krauss, A. H.
Exp. Eye Res., in press.; (b) Krauss, A. H.; Impagnatiello, F.; Toris, C. B.; Gale, D.
C.; Prasanna, G.; Borghi, V.; Chiroli, V.; Chong, W. K.; Carreiro, S. T.; Ongini, E.
Exp. Eye Res., in press.
*
All drugs were administered at the final concentration of 2% in a volume of 50 ll.
IOP was recorded before treatment (basal IOP) and at 30, 60, 90, 180 and 240 min
thereafter, using an applanation tonometer (Tono-Pen XL-Medtronic, Solan). Values
are reported as mean SEM of 8 rabbits per group. Carbomer 0.25% (THEA Phar-
maceutical S.R.) 0.1 ml was introduced bilateraly into anterior chamber of pre-
anesthetized rabbits (Zoletil 100, 0.10 mg/Kg b.w.) for inducing the ocular hyper-
tension, 2–3 weeks before the treatment.
#
Post-treatment IOP is that reflecting the lowest measurement recorded over the
observation period.
**
DD IOP reflects the maximal difference recorded in drug-treated versus vehicle
(Cremophor EL 5% and DMSO 0.4% in phosphate buffer pH 6.00 at room
temperature).
***
The time after administration when the maximal IOP lowering was achieved.