Journal of the American Chemical Society
Page 10 of 12
(6)
(7)
(8)
(9)
Suarez, S. A.; Muñoz, M.; Alvarez, L.; Venâncio, M. F.;
Rocha, W. R.; Bikiel, D. E.; Marti, M. A.; Doctorovich, F.
HNO Is Produced by the Reaction of NO with Thiols. J. Am.
2010,
49
(15),
6948–6954.
1
2
3
4
5
6
7
8
(20)
(21)
Rahman, Md. H.; Ryan, M. D. Redox and Spectroscopic
Properties of Iron Porphyrin Nitroxyl in the Presence of
Weak Acids. Inorg. Chem. 2017, 56 (6), 3302–3309.
Abucayon, E. G.; Khade, R. L.; Powell, D. R.; Zhang, Y.;
Richter-Addo, G. B. Hydride Attack on a Coordinated Fer-
ric Nitrosyl: Experimental and DFT Evidence for the
Formation of a Heme Model–HNO Derivative. J. Am. Chem.
Chem.
Soc.
2017,
139
(41),
14483–14487.
Ma, X. L.; Gao, F.; Liu, G.-L.; Lopez, B. L.; Christopher, T. A.;
Fukuto, J. M.; Wink, D. A.; Feelisch, M. Opposite Effects of
Nitric Oxide and Nitroxyl on Postischemic Myocardial In-
jury.
PNAS
1999,
96
(25),
14617–14622.
Paolocci, N.; Keceli, G.; Wink, D. A.; Kass, D. A. From Heav-
en to Heart: Nitroxyl (HNO) in the Cardiovascular System
and Beyond. The Chemistry and Biology of Nitroxyl (HNO)
800934-5.00019-0.
Flores-Santana, W.; Salmon, D. J.; Donzelli, S.; Switzer, C.
H.; Basudhar, D.; Ridnour, L.; Cheng, R.; Glynn, S. A.; Pao-
locci, N.; Fukuto, J. M.; Miranda, K. M.; Wink, D.D. The
Specificity of Nitroxyl Chemistry Is Unique Among Nitro-
gen Oxides in Biological Systems. Antioxidants & Redox
Soc.
2016,
138
(1),
104–107.
9
Pellegrino, J.; Bari, S. E.; Bikiel, D. E.; Doctorovich, F. Suc-
cessful Stabilization of the Elusive Species {FeNO} in a
Heme Model. J. Am. Chem. Soc. 2010, 132 (3), 989–995.
Goodrich, L. E.; Roy, S.; Alp, E. E.; Zhao, J.; Hu, M. Y.;
Lehnert, N. Electronic Structure and Biologically Relevant
Reactivity of Low-Spin {FeNO}8 Porphyrin Model Com-
plexes: New Insight from a Bis-Picket Fence Porphyrin.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22)
(23)
8
Signaling
2011,
14
(9),
1659–1674.
Inorg.
Chem.
2013,
52
(13),
7766–7780.
Lin, R.; Farmer, P. J. The HNO Adduct of Myoglobin:ꢀ
Synthesis and Characterization. J. Am. Chem. Soc. 2000,
(10)
Vásquez, M. A. M.; Pellegrino, J.; Álvarez, L.; Neuman, N. I.;
Doctorovich, F.; Martí, M. A. 9 - Interactions of HNO With
Metallated Porphyrins, Corroles, and Corrines. In The
Chemistry and Biology of Nitroxyl (HNO); Doctorovich, F.,
Farmer, P. J., Marti, M. A., Eds.; Elsevier: Boston, 2017; pp
5.00009-8.
Averill, B. A. Dissimilatory Nitrite and Nitric Oxide Reduc-
tases. Chem. Rev. 1996, 96 (7), 2951–2964.
Zumft, W. G. The Biological Role of Nitric Oxide in Bacte-
ria. Arch. Microbiol. 1993, 160 (4), 253–264.
Shiro, Y.; Fujii, M.; Isogai, Y.; Adachi, S.; Iizuka, T.;
Obayashi, E.; Makino, R.; Nakahara, K.; Shoun, H. Iron-
Ligand Structure and Iron Redox Property of Nitric Oxide
Reductase Cytochrome P450nor from Fusarium Ox-
ysporum: Relevance to Its NO Reduction Activity. Bio-
(24)
(25)
122
(10),
2393–2394.
Kumar, M. R.; Pervitsky, D.; Chen, L.; Poulos, T.; Kundu, S.;
Hargrove, M. S.; Rivera, E. J.; Diaz, A.; Colón, J. L.; Farmer,
P. J. Nitrosyl Hydride (HNO) as an O2 Analogue: Long-
Lived HNO Adducts of Ferrous Globins. Biochemistry
(11)
(12)
(13)
2009,
48
(22),
5018–5025.
(26)
(27)
Immoos, C. E.; Sulc, F.; Farmer, P. J.; Czarnecki, K.; Bocian,
D. F.; Levina, A.; Aitken, J. B.; Armstrong, R. S.; Lay, P. A.
Bonding in HNO-Myoglobin as Characterized by X-Ray
Absorption and Resonance Raman Spectroscopies. J. Am.
Chem.
Soc.
2005,
127
(3),
814–815.
Montenegro, A. C.; Amorebieta, V. T.; Slep, L. D.; Martín, D.
F.; Roncaroli, F.; Murgida, D. H.; Bari, S. E.; Olabe, J. A.
Three Redox States of Nitrosyl: NO+, NO., and NO−/HNO
Interconvert Reversibly on the Same Pentacyanofer-
rate(II) Platform. Angewandte Chemie International Edi-
chemistry
1995,
34
(28),
9052–9058.
(14)
(15)
Enemark, J. H.; Feltham, R. D. Principles of Structure,
Bonding, and Reactivity for Metal Nitrosyl Complexes.
Coordination Chemistry Reviews 1974, 13 (4), 339–406.
Speelman, A. L.; Lehnert, N. Heme versus Non-Heme Iron-
Nitroxyl {FeN(H)O}8 Complexes: Electronic Structure
and Biologically Relevant Reactivity. Acc. Chem. Res.
tion
2009,
48
(23),
4213–4216.
(28)
(29)
Fernandez, B. O.; Lorković, I. M.; Ford, P. C. Nitrite Cata-
lyzes Reductive Nitrosylation of the Water-Soluble Ferri-
Heme Model FeIII(TPPS) to FeII(TPPS)(NO). Inorg. Chem.
Laverman, L. E.; Ford, P. C. Mechanistic Studies of Nitric
Oxide Reactions with Water Soluble Iron(II), Cobalt(II),
and Iron(III) Porphyrin Complexes in Aqueous Solutions:ꢀ
Implications for Biological Activity. J. Am. Chem. Soc.
2014,
47
(4),
1106–1116.
(16)
(17)
(18)
Lancon, D.; Kadish, K. M. Electrochemical and Spectral
Characterization of Iron Mono- and Dinitrosyl Porphy-
rins. J. Am. Chem. Soc. 1983, 105 (17), 5610–5617.
Olson, L. W.; Schaeper, D.; Lancon, D.; Kadish, K. M. Char-
acterization of Several Novel Iron Nitrosyl Porphyrins. J.
Am. Chem. Soc. 1982, 104 (7), 2042–2044.
2001,
123
(47),
11614–11622.
(30)
McKenna, C. E.; Gutheil, W. G.; Song, W. A Method for
Preparing Analytically Pure Sodium Dithionite. Dithionite
Quality and Observed Nitrogenase-Specific Activities. Bi-
ochimica et Biophysica Acta (BBA) - General Subjects
Choi, I. Kyu.; Liu, Yanming.; Feng, DiWei.; Paeng, K. Jung.;
Ryan, M. D. Electrochemical and Spectroscopic Studies of
Iron Porphyrin Nitrosyls and Their Reduction Products.
1991,
1075
(1),
109–117.
https://doi.org/10.1016/0304-4165(91)90082-R.
Mason, J.; Larkworthy, L. F.; Moore, E. A. Nitrogen NMR
Spectroscopy of Metal Nitrosyls and Related Compounds.
(31)
(32)
Inorg.
Chem.
1991,
30
(8),
1832–1839.
Wei, Z.; Ryan, M. D. Infrared Spectroelectrochemical
Reduction of Iron Porphyrin Complexes. Inorg. Chem.
Chem.
Rev.
2002,
102
(4),
913–934.
(19)
Fleischer, E. B.; Palmer, J. M.; Srivastava, T. S.; Chatterjee,
A. Thermodyamic and Kinetic Properties of an Iron-
10
ACS Paragon Plus Environment