Organic Letters
Letter
product.9 It was reasoned that upon β-H elimination the
external rather than internal olefin was generated that impeded
the subsequent isomerization.
To demonstrate the utility of this method, we applied it in
the synthesis of valdecoxib and oxacillin (Scheme 2). First,
ACKNOWLEDGMENTS
■
F.L. is grateful for the financial support from the National
Natural Science Foundation of China (Grant No. 21302134),
the Natural Science Foundation of Jiangsu (Grant No.
BK20130338), and the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD). C.Z. is
grateful for the financial support from Soochow University, the
National Natural Science Foundation of China (Grant No.
21402134), the Natural Science Foundation of Jiangsu (Grant
No. BK20140306), the Project of Scientific and Technologic
Infrastructure of Suzhou (SZS201207), and the Priority
Academic Program Development of Jiangsu Higher Education
Institutions (PAPD).
Scheme 2. Synthesis of Valdecoxib and Oxacillin
REFERENCES
■
(1) (a) Bowden, K.; Drysdale, A. C. Tetrahedron Lett. 1965, 6, 727−
728. (b) Oster, T. A.; Harris, T. M. J. Org. Chem. 1983, 48, 4307−
4311. (c) Gagneux, A. R.; Hafliger, F.; Meier, R.; Eugster, C. H.
Tetrahedron Lett. 1965, 6, 2081−2084. (d) Filer, C. N.; Lacy, J. M.;
Peng, C. T. Synth. Commun. 2005, 35, 967−970.
̈
(2) (a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.;
Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer,
A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43,
775−777. (b) Talley, J. J.; Bertenshaw, S. R.; Brown, D. L.; Carter, J.
S.; Graneto, M. J.; Kellogg, M. S.; Koboldt, C. M.; Yuan, J.; Zhang, Y.
Y.; Seibert, K. J. Med. Chem. 2000, 43, 1661−1663.
(3) (a) Sidell, S.; Bulger, R. J.; Brodie, J. L.; Kirby, W. M. Clin.
Pharmacol. Ther. 1964, 5, 26−34. (b) Turck, M.; Ronald, A.;
Petersdorf, R. G. JAMA 1965, 192, 961−963. (c) Shaw, R. F.; Riley,
H. D., Jr.; Bracken, E. C. Clin. Pharmacol. Ther. 1965, 6, 492−497.
(d) Micetich, R. G.; Raap, R. J. Med. Chem. 1968, 18, 159−160.
(e) Severin, A.; Tabei, K.; Tenover, F.; Chung, M.; Clarke, N.;
Tomasz, A. J. Biol. Chem. 2004, 279, 3398−3407.
(4) For selected reviews, see: (a) Sutharchanadevi, M.; Murugan, R.
In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Elsevier B.V.: Amsterdam, The Netherlands,
1996; Vol. 3, pp 221−260. (b) Vitale, P.; Scilimati, A. Curr. Org. Chem.
2013, 17, 1986−2000. (c) Heasley, B. Angew. Chem., Int. Ed. 2011, 50,
8474−8477. (d) M.V.D., T.; Melo, P. e. Curr. Org. Chem. 2005, 9,
925−958.
bromination of isoxazole 2a using NBS gave rise to 3, which
was the common precursor for both valdecoxib and oxacillin.
Suzuki coupling of 3 with 4-sulfamoylbenzeneboronic acid
readily furnished valdecoxib in 73% yield. On the other hand,
methoxycarbonylation of 3 led to ester-substituted isoxazole 4
in good yield. After demethylation and the subsequent
treatment with thionyl chloride, 4 was coupled with 6-
aminopenicillanic acid (6-APA) to give oxacillin in an overall
67% yield for three steps. Significantly, both valdecoxib and
oxacillin were synthesized in a few steps starting from 5-
methylisoxazole. It can be anticipated that a series of valdecoxib
and oxacillin analogues can be readily accessed after gaining
various 5-methylisoxazoles from the current method.
In conclusion, we have developed a palladium-catalyzed
synthesis of 5-methylisoxazoles via oxime-directed functional-
ization of unactivated olefins. The reaction affords a variety of
5-methylisoxazoles in moderate to good yields. The value of the
method has been clearly demonstrated in the rapid synthesis of
valdecoxib and oxacillin. The oxime-directed functionalization
of olefins paved the way for a straightforward approach to the
construction of vicinal N,O-containing heterocycles.
(5) (a) Zhu, C.; Falck, J. R. Angew. Chem., Int. Ed. 2011, 50, 6626−
6629. (b) Zhu, C.; Falck, J. R. Org. Lett. 2011, 13, 1214−1217.
(6) For selected examples, see: (a) He, Y.-T.; Li, L.-H.; Yang, Y.-F.;
Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013,
49, 5687−5689. (b) Tripathi, C. B.; Mukherjee, S. Angew. Chem., Int.
Ed. 2013, 52, 8450−8453. (c) Han, B.; Yang, X.-L.; Fang, R.; Yu, W.;
Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem., Int. Ed. 2012, 51, 8816−
8820. (d) Mosher, M. D.; Norman, A. L.; Shurrush, K. A. Tetrahedron
Lett. 2009, 50, 5647−5648. (e) Norman, A. L.; Mosher, M. D.
Tetrahedron Lett. 2008, 49, 4153−4155. (f) Li, W.; Jia, P.; Han, B.; Li,
D.; Yu, W. Tetrahedron 2013, 69, 3274−3280.
(7) Jiang, D.; Peng, J.; Chen, Y. Org. Lett. 2008, 10, 1695−1698.
(8) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132,
6284−6285.
ASSOCIATED CONTENT
* Supporting Information
■
(9) See Supporting Information.
S
Detailed experimental procedures, characterizations, and copies
of 1H and 13C NMR spectra of new compounds. This material
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
5268
dx.doi.org/10.1021/ol502246t | Org. Lett. 2014, 16, 5266−5268