Carbazole Functional Ter(9,9-spirobifluorene)s
instead of long alkyl chains can effectively suppress the
degradation phenomenon.7 In this context, the spirobifluorene
with unusual rigid three-dimensional structure is an ideal
building block in construction of stable blue-light emitting8 and
plastic laser materials.9 Recently, Bo and co-workers10 reported
a full spirobifluorene polymer and spiro-bridged ladder-type
oligo-p-phenylenes, which exhibited extraordinary thermal and
PL spectral stability. Furthermore, Wong and Wu et al.11
reported the novel optoelectronic material constructed by
spirobifluorene trimer Mod I (the chemical structure is shown
in Scheme 1). This monodisperse trimer exhibited excellent
thermal-stability and high fluorescence quantum yields both in
solution (∼100%) and in solid state (90%). However, the EL
efficiency (1.1 cd A-1) using Mod I is unsatisfactory compared
with its very high solid PL efficiency.11c One of the possibilities
is the unbalanced injection of electrons and holes and their
transport abilities in the film of Mod I. Previous investigations
have demonstrated that the injection of electrons predominates
for fluorene-based polymers and oligomers.12 Thus, the intro-
duction of chromophores with low oxidation potentials, for
example, carbazole,13 into the Mod I is significantly interesting.
Furthermore, in our earlier research, an electrochemically
deposition (ED) operation has been found to prepare the
luminescent film applied for OLEDs.14 In the ED process, the
luminescent precursor can be directly deposited on the
Indium-Tin Oxida (ITO) electrodes through an oxidation
coupling reaction of the electroactive carbazole units.15 Thus,
our goal here is to improve stability of fluorene derivatives and
introduce carbazole units for facile hole injection and transport
while retaining the excellent optoelectronic and thermal proper-
ties of Mod I. For this purpose, a novel series of fluorene trimers
with spirobifluoren backbone and peripheral carbazole functional
groups are synthesized. Additionally, we have also synthesized
their homologous compound without carbazole groups for
comparison in the same condition.
2. Results and Discussion
2.1. Synthesis. The synthetic route of STCPC-6 and STCPC-
4, which contain a spirobifluorene backbone and peripheral
carbazole groups, is depicted in Scheme 1. The synthesis starts
with commercially available 3-bromoanisole (1) to achieve the
key monomers 7 and 8, which can undergo Suzuki coupling
reaction with 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)-9,9′-spirofluorene (preparation and purification according to
previous report)11a to afford the title compounds. First, treatment
of 1 with excess amounts of n-butyllithium at -78 °C in THF
and subsequent reaction with trimethyl borate could afford
3-methoxyphenyl boronic acid (2) in 70% yield. 3,3′-Bis-
(methoxy)-biphenyl (3) was obtained with 82% yield by Pd-
catalyzed Suzuki coupling reaction between 1 and 2 in a biphasic
system (toluene/aqueous Na2CO3). Bromination of 2 with
equimolar NBS in DMF at 0 °C gave 2-bromo-5,3′-bis-
(methoxy)-biphenyl (4) in 69% yield. The treated 4 with
n-butyllithium at -78 °C was trapped with 2-bromo-9-fluo-
renone to afford the hydroxy intermediate 9-(5,3′-bis(methoxy)-
biphenyl-2-yl)-2-bromofluorene-9-ol. Then, a successionally
acid-promoted dehydration cyclization reaction in a mixture of
acetic acid and hydrochloric acid to afford 2-bromo-3′,6′-
bis(methoxy)-9,9′-spirofluorene (5) with total yield of 60%. The
geometrical isomer of 5, that is, 2-bromo-1′,6′-bis(methoxy)-
9,9′-spirofluorene, was not obtained by controlling volume ratio
between acetic acid and hydrochloric acid and concentration
of 5 in mixed acid.16 Demethylation of 5 with boron tribromide
in CH2Cl2 at 0 °C gave 2-bromo-9,9′-spirofluorene-3′,6′-diol
(6) in 88% yield. 2-bromo-3′,6′-bis(N-carbazolyl-hexyloxy)-9,9′-
spirofluorene (7) and 2-bromo-3′,6′-bis(N-carbazolyl-butoxy)-
9,9′-spirofluorene (8) have been obtained by reaction of N-(6-
bromohexane)-carbazole or N-(4-bromobutane)-carbazole and
6 in the presence of potassium carbonate in DMF with 70%
and 61% yield, respectively. Finally, Suzuki coupling reactions
between monomers 7 or 8 and 2,7-bis(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-9,9′-spirobifluorene were performed in a
biphasic system (toluene/aqueous Na2CO3) using Pd(PPh3)4 as
a catalyst precursor, which give the compounds STCPC-6 and
STCPC-4 with different alkoxy length in 80% and 61% yields,
respectively. The model compound STHPH with only alkoxy
substitutions was also afforded from 6 in nearly the same manner
(6) (a) List, E. J. W.; Guentner, R.; Scandiucci de Freitas, P.; Scherf, U.
AdV. Mater. 2002, 14, 374. (b) Romaner, L.; Pogantsch, A.; Scandiucci de Freitas,
P.; Scherf, U.; Gaal, M.; Zojer, E.; List, E. J. W. AdV. Funct. Mater. 2003, 13,
597. (c) Romaner, L.; Heimel, G.; Wiesenhofer, H.; Scandiucci de Freitas, P.;
Scherf, U.; Bre´das, J.-L.; Zojer, E.; List, E. J. W. Chem. Mater. 2004, 16, 4667.
(d) Yang, X. H.; Jaiser, F. J.; Neher, D.; Lawson, P. V.; Bre´das, J.-L.; Zojer, E.;
Gu¨ntner, R.; Scandiucci de Freitas, P.; Forster, M.; Scherf, U. AdV. Funct. Mater.
2004, 14, 1097.
(7) (a) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mu¨llen,
K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
(b) Surin, M.; Hennebicq, E.; Ego, C.; Marsitzky, D.; Grimsdale, A. C.; Mu¨llen,
K.; Bre´das, J.-L.; Lzzaroni, R.; Lecle´re, P. Chem. Mater. 2004, 16, 994. (c) Li,
J.; Bo, Z. S. Macromolecules 2004, 37, 2013. (d) Vak, S.; Chun, C.; Lee, C. L.;
Kim, J.-J.; Kim, D-.Y. J. Mater. Chem. 2004, 14, 1342. (e) Vak, D.; Lim, B.;
Lee, S.-H.; Kim, D-.Y. Org. Lett. 2005, 7, 4229. (f) Li, Z. H.; Wong, M. S.
Org. Lett. 2006, 8, 1499. (g) Fu, Y.; Li, J.; Yan, S.; Bo, A. S. Macromolecules
2004, 37, 6395. (h) Cho, H.-J.; Jung, B-.J.; Cho, N. S.; Lee, J.; Shim, H.-K.
Macromolecules 2003, 36, 6704.
(8) (a) Katsis, D.; Geng, Y.; Ou, J. J.; Culligan, S. W.; Trajkovska, A.; Chen,
S. H.; Rothberg, L. J. Chem. Mater. 2002, 14, 1332. (b) Yu, W.-L.; Pei, J.;
Huang, W.; Heeger, A. J. AdV. Mater. 2000, 12, 828. (c) Wong, K.-T.; Wang,
C.-F.; Chou, C. H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. Org. Lett. 2002, 4, 4439.
(d) Pei, J.; Ni, J.; Zhou, X.-H.; Cao, X.-Y.; Lai, Y.-H. J. Org. Chem. 2002, 67,
4924. (e) Wu, F.-I.; Dodda, R.; Reddy, S.; Shu, C.-F. J. Mater. Chem. 2002, 12,
2893. (f) Bach, U.; Cloedt, K. D.; Spreitzer, H.; Gratzel, M. AdV. Mater. 2000,
12, 1060. (g) Bach, U.; Tachibana, Y.; Haque, S. A.; Moser, J.-E.; Durrant,
J. R.; Gratzel, M.; Klug, D. R. J. Am. Chem. Soc. 1999, 121, 7445. (h) Johansson,
N.; Salbeck, J.; Bauer, J.; Weisso¨rtel, F.; Bro¨ms, P.; Andersson, A.; Salaneck,
W. R. AdV. Mater. 1998, 10, 1136. (i) Wong, K.-T.; Liao, Y.-L.; Lin, Y.-T.; Su,
H.-C.; Wu, C.-C. Org. Lett. 2005, 7, 5131. (j) Wong, K.-T.; Chen, R.-T.; Fang,
F.-C.; Wu, C.-C.; Lin, Y.-T. Org. Lett. 2005, 7, 1979.
(9) (a) Salbeck, J.; Scho¨rner, M.; Fuhrmann, T. Thin Solid Films 2002, 417,
20. (b) Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H. Synth. Met.
1997, 209. (c) Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.;
Salbeck, J. Chem. ReV. 2007, 107, 1011.
(10) (a) Wu, Y.; Li, J.; Fu, Y.; Bo, Z. Org. Lett. 2004, 6, 3485. (b) Wu, Y.;
Zhang, J.; Bo, Z. Org. Lett. 2007, 9, 4435.
(11) (a) Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T.; Wang, C.-F.; Lin, Y.-T.;
Chiang, H.-H.; Hsieh, P.-Y.; Wu, C.-C.; Chou, C. H.; Su, Y. O.; Lee, G.-H.;
Peng, S.-M. J. Am. Chem. Soc. 2002, 124, 11576. (b) Wu, C.-C.; Liu, T.-L.;
Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y-M.; Chien, Y.-Y.
J. Am. Chem. Soc. 2003, 125, 3710. (c) Wu, C.-C.; Lin, Y.-T.; Wong, K.-T.;
Chen, R.-T.; Chien, Y.-Y. AdV. Mater. 2004, 16, 61. (d) Wu, C.-C.; Liu, T.-L.;
Lin, Y.-T.; Hung, W.-Y.; Ke, T.-H.; Wong, K.-T.; Chao, T.-C. Appl. Phys. Lett.
2004, 85, 1172. (e) Wu, C.-C.; Liu, W.-G.; Hung, W.-Y.; Liu, T.-L.; Wong,
K.-T.; Chien, Y.-Y.; Chen, R.-T.; Hung, T.-H.; Chao, T.-C.; Chen, Y-M. Appl.
Phys. Lett. 2005, 87, 052103.
(14) (a) Li, M.; Tang, S.; Shen, F.; Liu, M.; Xie, W.; Xia, H.; Liu, L.; Tian,
L.; Xie, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. J. Phys. Chem. B
2006, 110, 17784. (b) Li, M.; Tang, S.; Shen, F.; Liu, M.; Xie, W.; Xia, H.; Liu,
L.; Tian, L.; Xie, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. Chem.
Commun. 2006, 3393. (c) Li, M.; Tang, S.; Lu, D.; Shen, F.; Liu, M.; Wang,
H.; Lu, P.; Hanif, M.; Ma, Y. Semicond. Sci. Technol. 2007, 22, 855.
(15) Xia, C.; Advincula, R. C.; Baba, A.; Knoll, W. Chem. Mater. 2004, 16,
2852.
(12) Chang, S.-C.; He, G.; Chen, F.-C.; Guo, T.-F.; Yang, Y. Appl. Phys.
Lett. 2001, 79, 2088.
(13) (a) Xia, C.; Advincula, R. C. Macromolecules 2001, 34, 5854. (b) Liu,
B.; Yu, W-L.; Lai, Y.-H.; Huang, W. Chem. Mater. 2001, 13, 1984. (c) Li, J.;
Liu, D.; Li, Y.; Lee, C.-S.; Kwong, H.-L.; Lee, S. Chem. Mater. 2005, 17, 1208.
(d) Li, J.; Ma, C.; Tang, J.; Lee, C.-S.; Lee, S. Chem. Mater. 2005, 17, 615.
(16) Lee, H.; Oh, J.; Chu, H. Y.; Lee, J.-I.; Kim, S. H.; Yang, Y. S.; Kim,
G. H.; Do, L.-M.; Zyung, T.; Lee, J.; Park, Y. Tetrahedron 2003, 59, 2773.
J. Org. Chem. Vol. 73, No. 11, 2008 4213