4. Conclusions
In the present work we give a detailed description of fragment-based inhibitor development that utilised the
unforeseen discovery of a novel binding pocket on CK2α. The αD site was discovered by the serendipitous binding of
fragments in this new site. These fragments were first optimised to give a selective anchor in αD site that was then
linked to a weakly binding fragment in the ATP site which acted as the warhead to provide the inhibition. In order to
achieve the super additivity possible from linking fragments an extensive linker optimisation program was pursued to
identify the length and composition of the linker. The resulting compound vindicated this strategy of carefully
optimising the linker as the affinity of the final compound (320nM) was greater than could be expected from the
combination of two fragments with 250 µM and >500µM affinities. Although further work is required to improve this
chemical tool into a lead candidate, the discovery of CAM4066 has validated the concept of using the newly
discovered αD site to achieve selectivity. Furthermore, it showed a case of successfully applying a fragment linking
strategy which is known to be particularly challenging. In-silico molecular modelling was a remarkably beneficial tool
as, together with X-ray, it provided a means to development a suitable linker to attach the high-affinity molecule lying
in the αD pocket to the low-affinity fragment binding in the ATP site. Moreover, this work provided knowledge
regarding the new cryptic pocket and the linker channel, showing potential for the development of a new class of CK2
inhibitors.
Acknowledgments
We would like to thank all members of the Wellcome Trust Strategic Award team for useful discussions. We would like to
thank Dr Dima Chirgadze from the X-ray crystallographic facility, Dr Katherine Stott from the Biophysics facility at the
Department of Biochemistry and Victor Bolanos-Garcia for supplying the CK2β construct. We thank Diamond Light
Source for access to beamline IO2, IO3, IO4 and IO4-1 (proposals mx9537 and mx9007) and SOLEIL for access to
beamline Proxima 2. This work was funded by the Wellcome Trust Strategic (090340/Z/09/Z) and Pathfinder
(107714/Z/15/Z) Awards. The Spring lab acknowledges support from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [279337/DOS]. In
addition, the group research was supported by grants from the Engineering and Physical Sciences Research Council,
Biotechnology and Biological Sciences Research Council, Medical Research Council, Royal Society and Welcome
Trust.CD thanks the Herchel Smith Funds for a postdoctoral fellowship. JI thanks Trinity College, Cambridge for a
PhD studentship. KH wishes to thank the Cambridge Trust and the Skye Foundation for a PhD scholarship.
References
1.
2.
Murray, C. W.; Rees, D. C. Nat. Chem. 2009, 1, 187–192.
Carr, R. A. E.; Congreve, M.; Murray, C. W.; Rees, D. C. Fragment-based lead discovery: Leads by design. Drug Discov. Today
2005, 10, 987–992.
3.
4.
5.
Ciulli, A.; Abell, C. Fragment-based approaches to enzyme inhibition. Curr. Opin. Biotechnol. 2007, 18, 489–496.
Scott, D. E.; Coyne, A. G.; Hudson, S. A.; Abell, C. Biochemistry 2012, 51, 4990–5003.
Nazaré, M.; Matter, H.; Will, D. W.; Wagner, M.; Urmann, M.; Czech, J.; Schreuder, H.; Bauer, A.; Ritter, K.; Wehner, V. Angew.
Chemie - Int. Ed. 2012, 51, 905–911.
6.
Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P.; Pierre, F.; O'Brien, S. E.; Bliesath, J.; Omori, M.; Huser, N.; Ho, C.;
Proffitt, C.; Schwaebe, M. K.; Ryckman, D. M.; Rice, W. G.; Anderes, K. Cancer Res. 2010, 70, 10288–10298.
Niefind, K.; Raaf, J.; Issinger, O. G. Cell. Mol. Life Sci. 2009, 66, 1800–1816.
7.
8.
9.
Trembley, J. H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Cell. Mol. Life Sci. 2009, 66, 1858–1867.
Ahmad, K. A.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Adv. Enzyme Regul. 2008, 48, 179–187.
Ahmad, K. a; Wang, G.; Ahmed, K. Mol. Cancer Res. 2006, 4, 331–8.
Sarno, S.; Ghisellini, P.; Pinna, L. A. J. Biol. Chem. 2002, 277, 22509–22514.
Trembley, J. H.; Chen, Z.; Unger, G.; Slaton, J.; Kren, B. T.; Waes, C. Van; Ahmed, K. Biofectors. 2010, 36, 187–95.
Prudent, R.; Cochet, C. Chem. Biol. 2009, 16, 112–120.
Sarno, S.; de Moliner, E.; Ruzzene, M.; Pagano, M. A.; Battistutta, R.; Bain, J.; Fabbro, D.; Schoepfer, J.; Elliott, M.; Furet, P.;
Meggio, F.; Zanotti, G.; Pinna, L. A. Biochem. J. 2003, 374, 639–646.
10.
11.
12.
13.
14.
15.
16.
Faust, R. A.; Tawfic, S.; Davis, A. T.; Bubash, L. A.; Ahmed, K. Head Neck 2000, 22, 341–346.
Scott, J. W.; Galic, S.; Graham, K. L.; Foitzik, R.; Ling, N. X. Y.; Dite, T. A.; Issa, S. M. A.; Langendorf, C. G.; Weng, Q. P.;
Thomas, H. E.; Kay, T. W.; Birnberg, N. C.; Steinberg, G. R.; Kemp, B. E.; Oakhill, J. S. Chem. Biol. 2015, 22, 705–711.
Perera, Y.; Farina, H. G.; Hernández, I.; Mendoza, O.; Serrano, J. M.; Reyes, O.; Gómez, D. E.; Gómez, R. E.; Acevedo, B. E.;
Alonso, D. F.; Perea, S. E. Int. J. Cancer 2008, 122, 57–62.
17.
18.
19.
20.
21.
Raaf, J.; Brunstein, E.; Issinger, O. G.; Niefind, K. Chem. Biol. 2008, 15, 111–117.
Martel, V.; Filhol, O.; Colas, P.; Cochet, C. Oncogene 2006, 25, 7343–53.
Laudet, B.; Moucadel, V.; Prudent, R.; Filhol, O.; Wong, Y. S.; Royer, D.; Cochet, C. Mol. Cell. Biochem. 2008, 316, 63–69.
Laudet, B.; Barette, C.; Dulery, V.; Renaudet, O.; Dumy, P.; Metz, A.; Prudent, R.; Deshiere, A.; Dideberg, O.; Filhol, O.; Cochet,
C. Biochem. J. 2007, 408, 363–373.
22.
23.
24.
Brear, P.; De Fusco, C.; Hadje Georgiou, K.; Francis-Newton, N. J.; Stubbs, C. J.; Sore, H.; Venkitaraman, A.; Abell, C.; Spring,
D. R.; Hyvönen, M. Chem. Sci. 2016.
Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J.
Med. Chem. 2006, 49, 6177–6196.
Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.;
Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47, 1739–1749.