3676
M. J. Bhanushali et al. / Tetrahedron Letters 49 (2008) 3672–3676
5. (a) Khosropour, A. R.; Khodaei, M. M.; Ghozati, K. Tetrahedron
Encouraged by the above results, we next investigated
Lett. 2004, 33, 3525–3529; (b) Ollevier, T.; Lavie-Compin, G.
Tetrahedron Lett. 2002, 43, 7891–7893.
6. Sundararajan, G.; Vijayakrishna, K.; Varghese, B. Tetrahedron Lett.
2004, 45, 8253–8256.
7. Kamal, A.; Ramu, R. R.; Azhar, M. A.; Khanna, G. B. R.
Tetrahedron Lett. 2005, 46, 2675–2677.
8. Rampalli, S.; Chaudhari, S. S.; Akamanchi, K. G. Synthesis 2000, 78–
80.
9. Sagawa, S.; Abe, H.; Hase, Y.; Inaba, T. J. Org. Chem. 1999, 64,
4962–4965.
10. Chandrasekhar, S.; Ramachandar, T.; Prakash, S. J. Synthesis 2000,
1817–1818.
11. Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315–
8317.
12. Yadav, J. S.; Reddy, A. R.; Narsaiah, A. V.; Reddy, B. V. S. J. Mol.
Catal. A: Chem. 2007, 261, 207–212.
13. Rafiee, E.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. Synth.
Commun. 2004, 34, 3673–3681.
14. Robinson, M. W. C.; Timms, D. A.; Williams, S. M.; Graham, A. E.
Tetrahedron Lett. 2007, 48, 6249–6251.
15. (a) Desai, H.; D‘Souza, B. R.; Foether, D.; Johnson, B. F.; Lindsay,
H. A. Synthesis 2007, 902–910; (b) Mojtahedi, M. M.; Saidi, M. R.;
Bolourtchian, M. J. Chem. Res. 1999, 128–129.
16. Williams, D. B. G.; Lawton, M. Tetrahedron Lett. 2006, 47, 6557–
6560.
17. (a) Bhanushali, M. J.; Nandurkar, N. S.; Jagtap, S. R.; Bhanage, B.
M. Catal. Commun. 2008, 9, 1189–1195; (b) Nandurkar, N. S.;
Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. J. Mol. Catal A:
Chem. 2007, 271, 14.
18. General procedure for aminolysis of epoxides: A mixture of amine (1.2
equiv), epoxide (1 equiv) and Y(NO3)3Á6H2O (1 mol %) was stirred at
room temperature. The progress of the reaction was monitored using
a gas chromatograph (Chemito 1000). After completion, the product
was isolated by silica gel chromatography usingchloroform/methanol
as eluent.
the ring opening of epoxides with heterocyclic amines such
as pyrazole and imidazole (Table 3, entries 1–7). There are
very few reports in the literature for the ring opening of
epoxides with heterocyclic amines.20 These methods require
high temperature and pressure. The products obtained are
of pharmaceutical importance and thus a milder protocol
was desired for the synthesis of such hetero-amino alco-
hols. Initially, we studied the ring opening of various
epoxides such as styrene oxide, propylene oxide,
epichlorohydrin and cyclohexene oxide with pyrazole and
excellent results were obtained. The reaction of pyrazole
with styrene oxide and propylene oxide afforded 92% and
86% yields, respectively (entries 1 and 2). The ring opening
of cyclohexeneoxide and epichlorohydrin with pyrazole
afforded the desired amino alcohol in good yields (entries
3 and 4). The aminolysis of these epoxides was next inves-
tigated with imidazole which gave excellent yields in the
range of 83–90% under ambient conditions (entries 5–7).
Thus, the catalyst Y(NO3)3Á6H2O enabled efficient cou-
pling of heteroaromatic amines with various epoxides pro-
viding excellent yields of desired products.
In summary, the first example of selective ring opening
of aliphatic/aromatic epoxides with aliphatic, aromatic
and heteroaromatic amines catalyzed by Y(NO3)3Á6H2O
under ambient conditions is described. The protocol offers
several advantages such as low catalyst loading (1 mol %),
high reaction rate, solvent-free conditions and wider sub-
strate compatibility making it an important addition to
previously reported methods.
19. Spectral data of selected products: Table 2, entry 4: 1H NMR
(300 MHz, CDCl3, 25 °C) d = 3.65 (dd, J = 7.1 Hz, J = 11.1 Hz, 1H),
3.84 (dd, J = 3.8 Hz, J = 11.1 Hz, 1H) 4.39 (dd, J = 4 Hz,
J = 6.9 Hz, 1H), 6.55 (d, J = 8 Hz, Ar 1H), 6.71 (s, Ar 1H), 6.80 (d,
J = 7.7 Hz, Ar 1H), 7.05 (t, J = 7.8 Hz, Ar 1H), 7.16–7.26 (m, Ar 5H).
13C NMR (75 MHz, CDCl3, 25 °C) d = 60.1, 67, 110.5, 114.1, 116.5,
122.5, 126.1, 126.7, 127.7, 128.8, 129.6, 139.5, 147.4. MS (EI, 70 eV):
281 (9) (M+), 250 (100), 172 (28). MS/MS analysis (Àve ESI mode):
calcd for (MÀ1) = 280.26, found (MÀ1) = 280.07. Table 2, entry 9:
d = 1.22 (d, J = 6.2 Hz, 3H), 2.98 (dd, J = 8.4 Hz, J = 12.9 Hz, 1H)
3.16 (dd, J = 3.3 Hz, J = 12.8 Hz, 1H) 3.95–4.05 (m, 1H), 6.60–6.99
(m, Ar 4H). 13C NMR (75 MHz, CDCl3, 25 °C) d = 20.7, 51.3, 66.2,
112.8, 114.7, 118.5, 124.6, 136.3, 150.2. MS/MS analysis (+ve ESI
mode): calcd for (M+1) = 170.19, found (M+1) = 170.07. MS (EI,
70 eV): 169 (25) (M +), 124 (100), 77 (20). Table 2, entry 23:d = 1.01–
1.04 (m, 1H), 1.2–1.4 (m, 3H), 1.6–1.76 (m, 2H), 2.05 (m, 2H), 3.11
(ddd, J = 4 Hz, J = 9.75 Hz, J = 10.1 Hz, 1H), 3.33 (ddd, J = 4 Hz,
J = 9.75 Hz, J = 10.1 Hz, 1H), 6.80 (d, J = 8.1 Hz, Ar 1H), 6.87 (s, Ar
1H), 6.92 (d, J = 7.7 Hz, Ar 1H), 7.22 (t, J = 7.7 Hz, Ar 1H). 13C
NMR (75 MHz, CDCl3, 25 °C) d = 24.1, 24.6, 31.4, 33.4, 59.7, 74.3,
110.1, 114.2, 116.8, 122.5, 126.1, 129.7, 148.1. MS/MS analysis (Àve
ESI mode): calcd for (MÀ1) = 258.26, found (MÀ1) = 258.13. MS
(EI, 70 eV): 259 (46) (M+), 216 (12), 200 (100), 174 (33).
20. (a) Duprez, V.; Heumann, A. Tetrahedron Lett. 2004, 45, 5697–5701;
(b) Glas, H.; Thiel, W. R. Tetrahedron Lett. 1998, 39, 5509–5510; (c)
Kotsuki, H.; Wakao, M.; Hayakawa, H.; Shimianouchi, T.; Shiro, M.
J. Org. Chem. 1996, 61, 8915–8920; (d) Kotsuki, H.; Hayashuda, K.;
Shimianouchi, T.; Nishizawa, H. J. Org. Chem. 1996, 61, 984–990.
Acknowledgment
The financial assistance from the University Grants
Commission, India for a major research project (Project
No. 32-273/2006 (SR)) is acknowledged.
References and notes
1. (a) Frump, J. A. Chem. Rev. 1971, 71, 483–505; (b) Ager, D. J.;
Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–875; (c) O’Brien,
P. Angew. Chem., Int. Ed. 1999, 38, 326–329; (d) Li, G.; Chang, H. T.;
Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451–455; (e)
Joossens, J.; VanderVeken, P.; Lambeir, A. M.; Augustyns, K.;
Haemers, A. J. Med. Chem. 2004, 47, 2411–2413; (f) Chng, B. L.;
Ganesan, A. Bioorg. Med. Chem. Lett. 1997, 7, 1511–1514; (g)
Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr,
B.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J.
Med. Chem. 1989, 32, 1217–1230.
2. Pachon, L. D.; Gamez, P.; VanBrussel, J. J.; Reedijk, J. Tetrahedron
Lett. 2003, 44, 6025–6027.
3. Placzek, A. T.; Donelson, J. L.; Trivedi, R.; Gibbs, R. A.; De, S. K.
Tetrahedron Lett. 2005, 46, 9029–9034.
4. Mojtahedi, M. M.; Abaee, M. S.; Hamidi, V. Catal. Commun. 2007, 8,
1671–1674.