Letter
D'Andrea, A.; Froehling, S.; Doehner, K.; Marynen, P.; Vandenberghe,
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7941
(f) Sayyah, J.; Sayeski, P. P. Jak2 inhibitors: rationale and role as
therapeutic agents in hematologic malignancies. Curr. Oncol. Rep.
2009, 11, 117–124.
P.; Mesa, R. A.; Tefferi, A.; Griffin, J. D.; Eck, M. J.; Sellers, W. R.;
Meyerson, M.; Golub, T. R.; Lee, S. J.; Gilliland, D. G. Activating
mutation in the tyrosine kinase JAK2 in polycythemia vera, essential
thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer
Cell 2005, 7 (4), 387–397. (c) Baxter, E. J.; Scott, L. M.; Campbell, P. J.;
East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G. S.; Bench, A. J.;
Boyd, E. M.; Curtin, N.; Scott, M. A.; Erber, W. N.; Green, A. R.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproli-
ferative disorders. Lancet 2005, 365, 1054–1061. (d) Kralovics, R.;
Passamonti, F.; Buser, A. S.; Teo, S.-S.; Tiedt, R.; Passweg, J. R.;
Tichelli, A.; Cazzola, M.; Skoda, R. C. A gain-of-function mutation of
JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005, 352 (17),
1779–1790.
(7) Changelian, P. S.; Flanagan, M. E.; Ball, D. J.; Kent, C. R.;
Magnuson, K. S.; Martin, W. H.; Rizzuti, B. J.; Sawyer, P. S.;
Perry, B. D.; Brissette, W. H.; McCurdy, S. P.; Kudlacz, E. M.;
Conklyn, M. J.; Elliott, E. A.; Koslov, E. R.; Fisher, M. B.;
Strelevitz, T. J.; Yoon, K.; Whipple, D. A.; Sun, J.; Munchhof,
M. J.; Doty, J. L.; Casavant, J. M.; Blumenkopf, T. A.; Hines, M.;
Brown, M. F.; Lillie, B. M.; Subramanyam, C.; Chang, S.-P.;
Milici, A. J.; Beckius, G. E.; Moyer, J. D.; Su, C.; Woodworth,
T. G.; Gaweco, A. S.; Beals, C. R.; Littman, B. H.; Fisher, D. A.;
Smith, J. F.; Zagouras, P.; Magna, H. A.; Saltarelli, M. J.; Johnson,
K. S.; Nelms, L. F.; Des Etages, S. G.; Hayes, L. S.; Kawabata,
T. T.; Finco-Kent, D.; Baker, D. L.; Larson, M.; Si, M.-S.;
Paniagua, R.; Higgins, J.; Holm, B.; Reitz, B.; Zhou, Y.-J.; Morris,
R. E.; O’Shea, J. J.; Borie, D. C. Prevention of organ allograft
rejection by a specific Janus kinase 3 inhibitor. Science 2003, 302
(5646), 875–878.
(4) Recent reviews on the role of JAK2 mutations in myleoprolifera-
tive disorders: (a) Morgan, K. J.; Gilliland, D. G. A role for JAK2
mutations in myeloproliferative diseases. Annu. Rev. Med. 2008, 59,
213–222. (b) Levine, R. L. Janus kinase mutations. Semin. Oncol.
2009, 36 (2, Suppl. 1), S6–S11. (c) Guerin, E.; Praloran, V.; Lippert, E.
JAK2 mutations in myeloproliferative neoplasms: a 2008 update.
Hematologie 2008, 14, 368–377.
(8) Wang, T.; Ledeboer, W. M.; Duffy, J. P.; Pierce, A. C.; Zuccola,
H. J.; Block, E.; Shlyakter, D.; Hogan, J. K.; Bennani, Y. B. A
novel chemotype of kinase inhibitors: discovery of 3,4-ring fused
7-azaindoles and deazapurines as potent JAK2 inhibitors. Bioorg.
Med. Chem. Lett. (2009) doi 10.10126/j.bmcl2009.11.21.
(5) (a) Lucet, I. S.; Fantino, E.; Styles, M.; Bamert, R.; Patel, O.;
Broughton, S. E.; Walter, M.; Burns, C. J.; Treutlein, H.; Wilks,
A. F.; Rossjohn, J. The structural basis of Janus kinase 2 inhibition
by a potent and specific pan-Janus kinase inhibitor. Blood 2006,
107, 176–183. (b) Antonysamy, S.; Hirst, G.; Park, F.; Sprengeler, P.;
Stappenbeck, F.; Steensma, R.; Wilson, M.; Wong, M. Fragment-based
discovery of JAK-2 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19,
279–282. (c) Williams, N. K.; Bamert, R. S.; Patel, O.; Wang, C.;
Walden, P. M.; Wilks, A. F.; Fantino, E.; Rossjohn, J.; Lucet, I. S.
Dissecting specificity in the Janus kinases: the structures of JAK-
specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine
kinase domains. J. Mol. Biol. 2009, 387, 219–232. (d) Manshouri, T.;
(9) The purity of the combined atropisomers 9A and 9B as an equilibrium
mixture in DMSO was >95% as judged by orthogonal HPLC
methods. See Supporting Information for full characterization data.
(10) For full details regarding JAK2 and JAK3 Ki determinations refer
to Supporting Information and the following references: (a) Fox,
T.; Coll, J. T.; Ford, P. J.; Germann, U. A.; Porter, M. D.;
Pazhanisamy, S.; Fleming, M. A.; Galullo, V.; Su, M.-S.; Wilson,
K. P. A single amino acid substitution makes ERK2 susceptible
to pyridinyl imidazole inhibitors of p38 MAP kinase. Protein Sci.
1998, 7, 2249–2255. (b) Morrison, J. F.; Stone, S. R. Approaches to the
study and analysis of the inhibition of enzymes by slow- and
tight-binding inhibitors. Comments Mol. Cell. Biophys. 1985, 2,
347–368.
(11) The JAK2 data in Table 1 was obtained using a truncated kinase
domain form of the enzyme. Identical results were obtained for 9A
using alternative forms of JAK2 comprising the combined kinase
and pseudokinase domains having valine or phenylalanine at
amino acid 617 (unpublished results).
(12) GM-CSF stimulation of TF-1 cells leads to STAT-5 phosphoryla-
tion by JAK2, while IL2 stimulation of HT-2 cell lines yields
phospho-STAT-5 via the JAK3 pathway. For full details regarding
IC50 determinations using TF1 and HT2 cells refer to Supporting
Information.
ꢀ
Quintas-Cardama, A.; Nussenzveig, R. H.; Gaikwad, A.; Estrov, Z.;
Prchal, J.; Cortes, J. E.; Kantarjian, H. M.; Verstovsek, S. The JAK
kinase inhibitor CP-690,550 suppresses the growth of human poly-
cythemia vera cells carrying the JAK2V617F mutation. Cancer Sci.
2008, 99, 1265–1273. (e) Ledeboer, M. W.; Pierce, A. C.; Duffy, J. P.;
Gao, H.; Messersmith, D.; Salituro, F. G.; Nanthakumar, S.; Come, J.;
Zuccola, H. J.; Swenson, L.; Shlyakter, D.; Mahajan, S.; Hoock, T.; Fan,
B.; Tsai, W.-J.; Kolaczkowski, E.; Carrier, S.; Hogan, J. K.; Zessis, R.;
Pazhanisamy, S.; Bennani, Y. L. 2-Aminopyrazolo[1,5-a]pyrimidines as
potent and selective inhibitors of JAK2. Bioorg. Med. Chem. Lett.
2009, 19, 6529–6533. (f) Kiss, R.; Polgar, T.; Kirabo, A.; Sayyah, J.;
Figueroa, N. C.; List, A. F.; Sokol, L.; Zuckerman, K. S.; Gali, M.;
Bisht, K. S.; Sayeski, P. P.; Keseru, G. M. Identification of a novel
inhibitor of JAK2 tyrosine kinase by structure-based virtual screening.
Bioorg. Med. Chem. Lett. 2009, 19, 3598–3601.
(13) Halgren, T. A. MMFF VI. MMFF94s option for energy mini-
mization studies. J. Comput. Chem. 1999, 20, 720–729.
(6) Recent reviews on Jak2 inhibitors for potential treatment of
myeloproliferative disorders: (a) Atallah, E.; Verstovsek, S. Pro-
spect of JAK2 inhibitor therapy in myeloproliferative neoplasms.
Expert Rev. Anticancer Ther. 2009, 9, 663–670. (b) Takenaka, K.
JAK2 inhibitor therapy in myeloproliferative disorder. Ketsueki-
Shuyoka 2009, 58, 70–76. (c) Pardanani, A. JAK2 inhibitor therapy
in myeloproliferative disorders: rationale, preclinical studies and on-
going clinical trials. Leukemia 2008, 22 (P1), P23–P30. (d) Skoda,
R. C. Can we control JAK? Blood 2008, 111, 5419–5420. (e) Aposto-
lidou, E.; Kantarjian, H. M.; Verstovsek, S. JAK2 inhibitors: a reality? A
hope? Clin. Lymphoma Myeloma 2009, 9 (Suppl. 3), S340–S345.
(14) Michiels, J. J.; Juvonen, E. Proposal for revised diagnostic criteria
of essential thrombocythemia and polycythemia vera by the
Thrombocythemia Vera Study Group. Semin. Thromb. Hemostasis
1997, 23, 339–347.
(15) Pardanani, A.; Hood, J.; Lasho, T.; Levine, R. L.; Martin, M. B.;
Noronha, G.; Finke, C.; Mak, C. C.; Mesa, R.; Zhu, H.; Soll, R.;
Gilliland, D. G.; Tefferi, A. TG101209, a small molecule JAK2-
selective kinase inhibitor potently inhibits myeloproliferative dis-
order-associated JAK2V617F and MPLW515L/K mutations. Leu-
kemia 2007, 21 (8), 1658–1668.