C O M M U N I C A T I O N S
result. The complexity of the spectrum for encapsulated 10 reflects
its existence as a mixture of rotamers13 and social isomers.14
Elsewhere, we have described the principles of coencapsulation
of two guests within a host: the congruence of shapes, the
compatibility with lengths, the conformity with volumes, and the
complementarity of surfaces. These features manipulate reactivity
within the rigid capsules15 and contrast with flexible receptors with
more functionality16 or other unimolecular cages.17 The surround-
ings may also be thought of as a solvent cage fixed in place through
synthesis. The adaptation of solvent to the transition state during a
reaction inside a capsule does not incur an entropic price. Some
reactions do not—perhaps cannot—occur inside the confined
environment. In the cases at hand, encapsulation does provide an
alternative to reactions at high temperatures in bulk solution.
Acknowledgment. We are grateful to the Skaggs Institute for
support and Prof. S. J. Danishefsky for stimulating discussions and
sharing data (ref 8) prior to publication. J.H. and D.A. are Skaggs
Postdoctoral Fellows.
1
Figure 2. Partial H NMR spectra show the transformation of acid 2 (20
mM) and isonitrile 3 (6.0 mM) in the presence of capsule 1.1 (2.0 mM) at
300 K. Cartoon representations show the complexes involved in the
transformation. The intermediate within capsule (green) is undetectable in
1H NMR spectrum: (a) t ) 0 h; (b) t ) 7 h; (c) t ) 20 h; (d) 4 (authentic
sample) within capsule 1.1; (e) 5 (authentic sample) and acid 2 within
capsule 1.1.
Supporting Information Available: Reaction pathways and NMR
spectra. This material is available free of charge via the Internet at
References
(1) (a) Yoshizawa, M.; Kuskawa, T.; Fujita, M.; Yamaguchi, K. J. Am. Chem.
Soc. 2000, 122, 6311–6312. (b) Ziegler, M.; Brumaghim, J. L.; Raymond,
K. N. Angew. Chem., Int. Ed. 2000, 39, 4119–4121. (c) Dong, V. M.;
Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
2006, 128, 14464–1465.
(2) (a) Kang, J.; Rebek, J., Jr Nature 1997, 385, 50–52. (b) Pluth, M. D.;
Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85–88. (c) Nishioka,
Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007,
129, 7000–7001. (d) Kaanumalle, L. S.; Gibb, C. L. D.; Gibb, B. C.;
Ramamurthy, V. J. Am. Chem. Soc. 2004, 126, 14366–14367.
(3) Kang, J.; Santamaria, J.; Hilmersson, G.; Rebek, J., Jr J. Am. Chem. Soc.
1998, 120, 7389–7390.
(4) (a) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251–254.
(b) Chen, J.; Rebek, J., Jr Org. Lett. 2002, 4, 327–329.
(5) Passerini, M. Gazz. Chim. Ital. 1921, 51, 181.
(6) (a) Ugi, I.; Meyr, R. Angew. Chem. 1958, 70, 702–703. (b) Do¨mling, A.;
Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210.
1
Figure 3. Partial H NMR spectra show the transformation of acid 2 (20
mM) and isonitrile 7 (2.0 mM) in the presence of capsule 1.1 (2.0 mM) at
300 K (/ ) impurities). Cartoon representations show the complexes
involved in the transformation: (a) t ) 0 h; (b) t ) 5 h; (c) t ) 11 h; (d)
t ) 20 h; (e) t ) 34 h.
(7) (a) Gautier, A. Liebigs Ann. 1896, 151, 240–243. (b) Shaabani, A.;
Soleimani, E.; Rezayan, A. H. Tetrahedron Lett. 2007, 48, 6137–6141.
(8) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446–5448.
(9) (a) Schwarz, J. S. P. J. Org. Chem. 1972, 37, 2906–2908. (b) Brady, K.;
Hegarty, A. F. J. Chem. Soc., Prekin Trans. 2 1980, 121–126. (c) Hegarty,
A. F. Acc. Chem. Res. 1980, 13, 448–454. (d) Hoy, D. J.; Poziomek, E. J.
J. Org. Chem. 1968, 33, 4050–4054.
and the acid 2 gradually fill the capsule. This combination was
identified by comparison with an independently synthesized sample
of 10 (Figure 3).
(10) (a) Heinz, T.; Rudkevich, D. M.; Rebek, J., Jr Nature 1998, 394, 764–766.
(b) Heinz, T.; Rudkevich, D. M.; Rebek, J., Jr Angew. Chem., Int. Ed.
1999, 38, 1136–1139. (c) Ko¨rner, S. K.; Tucci, F. C.; Rudkevich, D. M.;
Heinz, T.; Rebek, J., Jr Chem.—Eur. J. 2000, 6, 187–195.
(11) Rebek, J., Jr Angew. Chem., Int. Ed. 2005, 44, 2068–2078.
(12) Mecozzi, S.; Rebek, J., Jr Chem.—Eur. J. 1998, 4, 1016–1022.
(13) Avalos, M.; Babiano, R.; Barneto, J. L.; Cintas, P.; Clemente, F. R.; Jimenez,
J. L.; Palacios, J. C. J. Org. Chem. 2003, 68, 1834–1842.
(14) Shivanyuk, A.; Rebek, J., Jr J. Am. Chem. Soc. 2002, 124, 12074–12075.
(15) For reviews, see: (a) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond,
K. N. Acc. Chem. Res. 2005, 38, 349–358. (b) Fujita, M.; Umemoto, K.;
Yoshizawa, M.; Fujita, M.; Kusakawa, T.; Birhada, K. Chem. Commun.
2001, 509–518. (c) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr Angew.
Chem., Int. Ed. 2002, 41, 1488–1508.
Ironically, the expected but absent rearrangement product 9 is a
better guest (nearly ideal occupancy12) than any of the other
products observed from the reaction in the presence of the capsule,
as revealed by competitive binding experiments. The formation of
8 in the capsule is irreversible since the ratio of the starting
coencapsulation complex to 8 changes (decreases) with time. At
any rate, this capsule prevents the rearrangement, yet provides a
source of reactive 8 that leaks out of the capsule to react with the
acid in bulk solution. The capsule could be regarded as a catalyst
for the formation of the symmetrical anhydride 6 since it is too
large to fit inside the capsule. However, the other product, 10, does
eventually occupy the capsule so classic product inhibition is the
(16) Gala´n, A.; de Mendoza, J.; Toiron, C.; Bruix, M.; Deslongchamps, G.;
Rebek, J., Jr J. Am. Chem. Soc. 1991, 113, 9424–9425.
(17) Brody, M.; Schalley, C. A.; Rudkevich, D. M.; Rebek, J., Jr Angew. Chem.,
Int. Ed. 1999, 38, 1640–1644.
JA802288K
9
J. AM. CHEM. SOC. VOL. 130, NO. 25, 2008 7811