NJC
Paper
13 H. Kikuchi, Struct. Bonding, 2008, 128, 99–117.
with 10–15 wt% chiral dopant ISO(6OBA)2 on heating. Based on
the molecular modeling, we demonstrated that a wider BP
range can be induced when two difluoro substituted Schiff
base mesogens that possess larger dipole moments are doped
with appropriate concentrations of chiral dopants S811 or
ISO(6OBA)2. In addition, the dipole moments of Schiff base
mesogens I are larger than those of Schiff base mesogens III.
Consequently, it is concluded that BPs can be induced for
racemic rodlike Schiff base mesogens I in a chiral system and
it is easier than that for racemic rodlike Schiff base mesogens
III. In addition, the presence of two fluoro substituents in the
racemic rodlike Schiff base mesogens is the main factor that
affects BP stabilization for Schiff base mesogens III in a chiral
system. This work reports the effects of molecular structure and
functional group of racemic rodlike Schiff base mesogens on
BP stabilization under chiral conditions. Moreover, it also offers
possible approaches for the use of the difluoro substituted Schiff
base mesogen H-EI6-F as a host to be diluted with nematic LCs,
which may be used for future applications of room-temperature
eutectic liquid crystal mixtures with wide BP ranges.
14 I.-H. Chiang, C.-J. Long, H.-C. Lin, W.-T. Chuang, J.-J. Lee
and H.-C. Lin, ACS Appl. Mater. Interfaces, 2014, 6, 228–235.
15 H. Wang, Z. Zheng and D. Shen, Liq. Cryst., 2012, 39, 99–103.
16 A. Yoshizawa, RSC Adv., 2013, 3, 25475–25497.
17 M. Sato and A. Yoshizawa, Adv. Mater., 2007, 19, 4145–4148.
18 H. Iwamochi, T. Hirose, Y. Kogawa and A. Yoshizawa, Chem.
Lett., 2010, 39, 170–171.
19 A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi and
J. Yamamoto, J. Mater. Chem., 2009, 19, 5759–5764.
20 M. Tanaka and A. Yoshizawa, J. Mater. Chem. C, 2013, 1, 315–320.
21 C. Luo, Y. Jia, B. Sun and F. Meng, New J. Chem., 2017, 41,
3677–3686.
22 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang and T. Kajiyama,
Nat. Mater., 2002, 1, 64–68.
23 Y. Chen and S.-T. Wu, J. Appl. Polym. Sci., 2014, 40556.
24 L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi,
D. Zhao, H. Yang and L. Guo, J. Mater. Chem. C, 2013, 1,
6526–6531.
25 W. L. He, G. H. Pan, Z. Yang, D. Y. Zhao, G. G. Niu, W. Huang,
X. T. Yuan, J. B. Guo, H. Cao and H. Yang, Adv. Mater., 2009, 21,
2050–2053.
26 B. Li, W. He, L. Wang, X. Xiao and H. Yang, Soft Matter,
2013, 9, 1172–1177.
Conflicts of interest
There are no conflicts to declare.
27 F. Castles, S. M. Morris, E. M. Terentjev and H. J. Coles,
Phys. Rev. Lett., 2010, 104, 157801.
28 H. Wang, Z. Zheng and D. Shen, Liq. Cryst., 2012, 39, 99–103.
29 W.-Q. Yang, G.-Q. Cai, Zh. Liu, X.-Q. Wang, W. Feng, Y. Feng,
D. Shen and Z. Zheng, J. Mater. Chem. C, 2017, 5, 690–696.
30 K. V. Le, S. Aya, Y. Sasaki, H. Choi, F. Araoka, K. Ema,
Acknowledgements
This research was supported by the Ministry of Science and
Technology through MOST 106-2113-M-036-001, MOST 106-2113-M-
027-002, and Tatung University through B107-C04-010, Taiwan. In
addition, we particularly thank Mr Chang-Yu Chou and Ms Pei-Yi
Shih for assisting in the synthesis of some precursors of these Schiff
base mesogens.
´
J. Mieczkowski, A. Jakli, K. Ishikawa and H. Takezoe, J. Mater.
Chem., 2011, 21, 2855–2857.
31 S.-T. Hur, M.-G. Gim, H.-J. Yoo, S.-W. Choi and H. Takezoe,
Soft Matter, 2011, 7, 8800–8803.
32 H. C. Jeong, K. V. Le, M. J. Gim, S. T. Hur, S. W. Choi,
F. Araoka, K. Ishikawa and H. Takezoe, J. Mater. Chem.,
2012, 22, 4627–4630.
References
33 M.-J. Gim, S.-T. Hur, K.-W. Park, M. Lee, S.-W. Choi and
H. Takezoe, Chem. Commun., 2012, 48, 9968–9970.
34 X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang,
W. He and H. Yang, Chem. Commun., 2013, 49, 10097–10099.
35 O. Jin, D. Fu, J. Wei, H. Yang and J. Guo, RSC Adv., 2014, 4,
28597–28600.
36 J. Wang, Y. Shi, K. Yang, J. Wei and J. Guo, RSC Adv., 2015, 5,
67357–67364.
37 J. L. Serrano and T. Sierra, Low Molecular Weight Calamitic
Metallomesogens, in Metallomesogens, Wiley-VCH, Weinheim,
1996, pp. 43–123.
1 L. Rao, Z. Ge and S. T. Wu, Opt. Express, 2010, 18, 3143–3148.
2 J. Yan, S.-T. Wu, K.-L. Cheng and J.-W. Shiu, Appl. Phys. Lett.,
2013, 102, 081102.
3 J. Yan and S.-T. Wu, Opt. Mater. Express, 2011, 1, 1527–1535.
4 Y. Chen and S.-T. Wu, J. Appl. Polym. Sci., 2014, 131, 40556.
5 L. Rao, Z. Ge, S.-T. Wu and S. H. Lee, Appl. Phys. Lett., 2009,
95, 231101.
6 J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng and S.-T. Wu,
J. Mater. Chem., 2011, 21, 7870–7877.
7 M. Lee, S. T. Hur, H. Higuchi, K. Song, S.-W. Choi and
H. Kikuchi, J. Mater. Chem., 2010, 20, 5813–5816.
8 Z. Ge, L. Rao, S. Gauza and S.-T. Wu, J. Disp. Technol., 2009,
5, 250–256.
38 T. Seshadri and H. Haupt, Chem. Commun., 1998, 735–736.
39 B. N. Veerabhadraswamy, D. S. Shankar Rao, S. Krishna
Prasad and C. V. Yelamaggad, New J. Chem., 2015, 39, 2011–2027.
40 C. V. Yelamaggad, I. S. Shashikala, G. Liao, D. S. Shankar Rao,
9 L. Rao, Z. Ge, S. Gauza, K.-M. Chen and S.-T. Wu, Mol. Cryst.
Liq. Cryst., 2010, 527, 30–42.
´
S. K. Prasad, Q. Li and A. Jakli, Chem. Mater., 2006, 18, 6100–6102.
10 L. Rao and S.-T. Wu, Liq. Cryst. Today, 2014, 24, 3–12.
11 Z. B. Ge, S. Gauza, M. Z. Jiao, H. Q. Xianyu and S. T. Wu,
Appl. Phys. Lett., 2009, 94, 101104.
41 C. V. Yelamaggad, V. P. Tamilenthi, A. S. Achalkumar, D. S.
Shankar Rao, G. G. Nair and S. K. Prasad, J. Mater. Chem.,
2009, 3, 2906–2908.
12 M. Jiao, Y. Li and S.-T. Wu, Opt. Lett., 2011, 36, 1404.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018
New J. Chem.