P. Haldar, J. K. Ray / Tetrahedron Letters 49 (2008) 3659–3662
3661
3.2. 1-(4-Fluorophenyl)-5-methoxy-4-phenyl-1,5-
dihydropyrrol-2-one ð3bÞ
Ar
O
N3
Ar'
Ar
O
CO2H
Ar'
N
N
CAN
CH3CN-NaN3
1c
4
Colourless solid; mp 136–139 °C; IR (KBr) m
1688,
max
1
1509 cmꢀ1; H NMR (200 MHz; CDCl3): d 2.99 (s, 3H),
6.40 (s, 1H), 6.61 (s, 1H), 7.06–7.15 (m, 2H), 7.45–7.49
(m, 3H), 7.70–7.78 (m, 4H). 13C NMR (50 MHz; CDCl3):
d 48.7, 88.4, 115.8 (d, J ꢁ 22.4 Hz), 122.3, 122.4, 122.6,
126.9, 129.1, 130.1, 130.9, 133.2, 152.9, 159.8 (d,
J ꢁ 242.7 Hz), 168.7. Anal. Calcd for C17H14FNO2: C,
72.07; H, 4.98; N, 4.94. Found: C, 71.98; H, 5.01; N,
4.92. ESI-MS: for C17H14FNO2 [M], [M+H] + = 284.09.
Scheme 4.
lactam derivatives via CAN mediated one-pot decarboxyl-
ative hydroxylation/alkoxylation/azidination of 1,3-diaryl-
5-oxo-pyrrolidin-2-carboxylic acids at room temperature.
The 5-alkoxy/azido-dihydropyrrol-2-one derivatives may
serve as dienophiles in Diels–Alder reactions.15 The lactam
carbonyl could be further reduced7a,d,e using sodium boro-
hydride–iodine in dry THF to synthesize differently substi-
tuted hydroxy-pyrrolidine derivatives, which have often
been found to show versatile biological activities.16a–c The
operational simplicity and the mild conditions of this
one-pot process open up new prospects in this area and it
is anticipated that this method will lead to broader applica-
tions in the synthesis of bioactive hydroxy-pyrrolidine
derivatives.
3.3. 5-Azido-1-(3,4-dichlorophenyl)-4-phenylpyrrolidin-2-
one ð4Þ
1
Off-white solid; yield 77%; mp 224–226 °C; H NMR
(200 MHz; CDCl3 + DMSO-d6): d 6.13 (s, 1H), 6.24 (s,
1H), 7.20–7.26 (m, 4H), 7.54–7.61 (m, 3H), 7.88 (d, 1H,
J ꢁ 2.5 Hz). 13C NMR (50 MHz; CDCl3 + DMSO-d6): d
82.6, 118.9, 119.2, 120.9, 125.8, 127.1, 128.4, 129.7, 130.0,
130.1, 131.5, 137.1, 156.4, 167.7. Anal. Calcd for
C16H10Cl2N4O: C, 55.67; H, 2.92; N, 16.23. Found: C,
55.78; H, 2.90; N, 16.19.
2. General procedure for the synthesis of trans-5-hydroxy-
1,4-diarylpyrrolidin-2-ones (2) from 1,3-diaryl-5-oxo-
pyrrolidine-2-carboxylic acids (1)
Acknowledgements
To a stirred solution of 1,3-diaryl-5-oxo-pyrrolidine-2-
carboxylic acid 1 (1 mmol) in acetonitrile (10 mL) in an
open-necked round bottom flask, an aqueous solution of
ceric ammonium nitrate (2.2 mmol in 10 mL of water)
was added and stirring was continued at room temperature
(25–30 °C) for 3–4 h. After completion of the reaction
(monitored by TLC), acetonitrile was removed under vac-
uum and the residue was dissolved in ether. The solution
was washed with saturated sodium bicarbonate solution
and then with brine solution and dried over anhydrous
Na2SO4. Removal of the solvent furnished the crude prod-
uct, which was purified by crystallization from ether–petro-
leum ether (6:1) mixture.
Financial support from DST and CSIR (New Delhi) is
gratefully acknowledged.
References and notes
1. (a) Corey, E. J.; Cassanova, J. J. Am. Chem. Soc. 1963, 85, 165; (b)
Kochi, J. K.; Bacha, J. D.; Bethea, T. W. J. Am. Chem. Soc. 1967, 89,
6538; (c) Anderson, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92,
2450; (d) Kochi, J. K.; Bacha, J. D. J. Org. Chem. 1968, 75, 1968; (e)
Mirkhani, V.; Tangestaninejad, S.; Moghadam, M.; Moghbel, M.
Bioorg. Med. Chem. 2004, 12, 903.
2. (a) Schwartz, R. E.; Helms, G. L.; Bolessa, E. A.; Wilson, K. E.;
Giacobbe, R. A.; Tkacz, J. S.; Bills, G. F.; Liesch, J. M.; Zink, D. L.;
Curotto, J. E.; Pramanik, B.; Onishi, J. C. Tetrahedron 1994, 50, 1675;
(b) Coutrot, P.; Claudel, S.; Didierjean, C.; Grison, C. Bioorg. Med.
Chem. Lett. 2006, 16, 417; (c) Corey, E. J.; Reichard, G. A. J. Am.
Chem. Soc. 1992, 114, 10677; (d) Uno, H.; Baldwin, J. E.; Russell, A.
T. J. Am. Chem. Soc. 1994, 116, 2139.
3. (a) Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada, H. J.
Antibiot. 1995, 48, 733; (b) Winterfeldt, E.; Nelke, J. M. Chem. Ber.
1970, 103, 1174; (c) Winterfeldt, E. Synthesis 1975, 617; (d) Hubert, J.
C.; Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1975, 31,
1437; (e) Wakabayashi, T.; Saito, M. Tetrahedron Lett. 1977, 18, 93;
(f) Wuonola, M. A.; Woodward, R. B. J. Am. Chem. Soc. 1973, 95,
5098.
4. (a) Okita, M.; Wakamatsu, T.; Ban, Y. J. Chem. Soc., Chem.
Commun. 1979, 749; (b) Wijnberg, J. B. P. A.; Schoemaker, H. E.;
Speckamp, W. N. Tetrahedron 1978, 34, 179; (c) Pappo, R.; Allen, D.
S.; Lemieux, R. U.; Johnson, W. S. J. Org. Chem. 1956, 21, 478; (d)
Barco, A.; Benetti, S.; Pollini, G. P.; Baraldi, P. G.; Simoni, D.;
Vicentini, C. B. Synthesis 1979, 68; (e) Akue-Gedu, R.; Ebrik, S. A.
A.; Witczak-Legrand, A.; Fasseur, D.; Ghammarti, S. E.; Couturier,
D.; Decroix, B.; Othman, M.; Debacker, M.; Rigo, B. Tetrahedron
2002, 58, 9239.
3. Spectral data of representative compounds
3.1. 1-(3,4-Dichlorophenyl)-5-hydroxy-4-phenylpyrrolidin-
2-one ð2cÞ
White solid; mp 164–166 °C; 1H NMR (200 MHz;
CDCl3): d 2.67 (dd, 1H, J ꢁ 4.3 Hz and 17.5 Hz), 3.22
(dd, 1H, J ꢁ 8.9 Hz and 17.5 Hz), 3.41–3.47 (m, 1H),
5.49 (d, 1H, J ꢁ 2.1 Hz), 7.19–7.24 (m, 3H), 7.29–7.37
(m, 3H), 7.41–7.44 (m, 1H), 7.70 (d, 1H, J ꢁ 2.8 Hz). 13C
NMR (50 MHz; CDCl3 + DMSO-d6): d 36.9, 45.0, 89.6,
121.1, 123.3, 126.0, 127.5, 128.2, 129.5, 131.4, 136.7,
140.5, 172.4. ESI-MS: for C16H13Cl2NO2 [M],
[M+H]+ = 322.03 (35Cl), 324.03 (35Cl and 37Cl). Anal.
Calcd for C16H13Cl2NO2: C, 59.65; H, 4.07; N, 4.35.
Found: C, 59.57; H, 4.04; N, 4.30.